
Newcastle University

School of Mathematics and Statistics

MMath Dissertation

Symbolic Dynamics

Author: Christopher Barrett
Supervisor: Dr. Evgenios Kakariadis

1

Abstract

First we introduce the topic of Symbolic dynamics and the main objects and morphisms of
study - shift spaces and sliding block codes respectively. We see an appropriate metric that
can be put on these spaces, and that the interpretation of these objects under the induced
topology is neatly consistent with our raw definitions. Specifically, it turns out we are
studying exactly the continuous and shift commuting functions between compact and shift
invariant spaces. Next we inspect the link between shift spaces and graphs. Shifts of finite
type are exactly conjugate to those which can be represented by an unlabeled graph, while
sofic shifts are a superset of these that can be represented by a labeled graph. We proceed
to give the details of a specific graphical representation of sofic shifts - follower set graphs
- along with an algorithm (and implementation) for finding such graphs for shifts of finite
type. For a subset of sofic shifts we also show that there exists a certain unique minimal
representation, which can be found as a subgraph of these follower set graphs. Finally we
present a result showing that unlabeled graph isomorphism of follower set graphs implies
an unlabeled isomorphism of these minimal representations, when they exist.

Acknowledgments

I would like to thank my project supervisor, Evgenios Kakariadis, who has been incredi-
bly supportive and dedicated throughout this project. Without him, I never would have
discovered this subject - nor would I have had half as much fun working on it.

2

Contents

1 Introduction 4

2 Fundamentals of Shift Spaces 5
2.1 Shift Spaces . 5
2.2 Languages . 7
2.3 Sliding Block Codes . 8
2.4 Shifts as Metric Spaces . 10

3 Shifts of Finite Type 15
3.1 Basic Properties and Characterization . 15
3.2 Graphical Representations . 17

4 Sofic Shifts 22
4.1 Basic Properties and Characterization . 22
4.2 Follower Set Graphs . 24
4.3 Minimal Right Resolving Presentations . 26
4.4 Entropy . 33

5 Follower Set Graph Algorithm 35
5.1 Preliminaries . 35
5.2 Algorithm . 36

6 Discussion 39

Appendix A Pseudocode 40

Appendix B Code 42

3

1 Introduction

Symbolic dynamics was initially motivated by the study of dynamical systems. One can discretize
time in such a system, so that the state is observed only at regular intervals of time rather than
continuously. A further simplification is to also discretize the space by dividing it into a finite
number of disjoint areas. Taking a point in space, we can approximate its orbit - where it is
mapped to in the space - by recording which area it is in at each discrete time. By associating
each area with a letter, and each time with an integer, we can represent this orbit using a bi-
infinite sequence of letters drawn from a finite alphabet. The study of such sequences is what
we focus our attention on.

Shift invariance is a natural consequence of modeling dynamical systems, since a point and
its position one interval further in time correspond exactly to a sequence and its image under
the shift map. Our definition of shift spaces is restricted to only those that can be generated
by a set of “forbidden words” - that is, the shift space would be the set of bi-infinite sequences
which do not contain any such word. Clearly this definition reflects such shift invariance, which
in turn is reflected in the naming of these objects.

The techniques and ideas from this subject have found significant applications in data storage
and transmission. For example, when storing audio data on a compact disc, we often use
sequences of 1’s separated by at least two, but no more than ten, 0’s. There are physical reasons
for this. Along one groove of a CD, binary data is read based on how the track is magnetized. If
two 1’s are too close together, the magnetic forces representing the 1’s are at risk of canceling out
and the signal is harder to detect. However, two successive 1’s are read as two pulses separated
by some length of time. The length of time is used to calculate the number of 0’s in between.
But the clocking circuit used to measure the time interval may drift ever so slightly - which is
not a problem at small time intervals, but adds up over larger ones. Hence, the clocking circuit
is reset after every detection of a 1 - and we wish not to leave too long between successive
1’s. When studying methods of encoding in such a way, we are actually asking questions about
mappings from the space of arbitrary sequences to the space of sequences constrained in the
above manner (named the run length limited shift). This is Symbolic Dynamics [6].

In Section 2, we will give the basic definitions of shift spaces, along with a characterization
using allowable words instead of forbidden words. We then discuss the appropriate morphisms
between these objects. A metric is given under which these objects and morphisms are proven
to be exactly those satisfying and preserving certain fundamental properties.

Section 3 introduces the first specific type of shift space we will study - shifts of finite type.
These are shift spaces which can be generated by a finite set of forbidden words, and they are
fundamentally the same as those which can be represented on an unlabeled graph.

In Section 4, we introduce sofic shifts, a superset of shifts of finite type [8]. We define these to
be exactly the shift spaces which can be represented on a labeled graph, but prove that they are
in fact the closure of shifts of finite type under the appropriate surjective morphisms. Labeled
graphical representations are non-unique, however for sofic shifts which can be represented on
an irreducible graph, we show that there exists a certain unique minimal representation [4]. We
also give a specific well defined presentation, the follower set graph, and show the minimal graph,
when it exists, can be found as its subgraph.

We give a brief introduction to a measure of complexity called entropy, which proves to be
a useful (in)variant of shift spaces. This is then used to prove a central result, originally drawn
from our related paper [2]. The proof shows that unlabeled isomorphism of the follower set

4

graphs implies unlabeled isomorphism of the unique minimal representations, when they exist.
In Section 5, we present an algorithm which calculates the follower set graph given a finite set

of forbidden words. This is then easily extended to calculate the unique minimal presentation,
again when it exists. In the appendices, we give a concrete implementation written in the
programming language Haskell. This code was used in the aforementioned related paper, and a
working version of the program can be found in the references [1]. It extends the core algorithm
and uses it to search for distinct shifts of finite type which generate follower set graphs which
are isomorphic when considered without labels.

2 Fundamentals of Shift Spaces

2.1 Shift Spaces

An alphabet A consists of a finite set of discrete symbols such as {0, 1, . . . , 9} or {a, b, . . . , z}.
The fundamental elements of study in Symbolic Dynamics are bi-infinite sequences of these
“letters”, drawn from a given alphabet. Such a sequence is denoted by x = (xi)i∈Z, or by

x = . . . x−2x−1.x0x1x2 . . . ,

where each xi ∈ A.

Definition 2.1 (Full Shift). The full A-shift is the set of all bi-infinite sequences of symbols
from A, written as

AZ = {x = (xi)i∈Z : xi ∈ A, ∀i ∈ Z}.

Note that AZ is the standard mathematical notation for the set of all functions from Z to A -
functions which can be viewed as bi-infinite sequences with elements drawn from A. The full
r-shift is the full shift over the alphabet {0, 1, . . . , r− 1}. Sequences drawn from the full 2-shift
are called binary sequences.

A word or block is a finite sequence of letters. Words of length n are commonly referred to
as n-blocks or n-words. For words u and v, writing uv simply denotes concatenation. Given a
word w, writing |w| refers to the number of letters in the word. The same notation used on a
set denotes the number of elements contained in it. Writing wn for n ∈ N means w is repeated
n time s. The empty word is counted as a word of 0 length, denotes ∅.

Given some x ∈ AZ, we refer to the block of symbols from coordinates i to j as

x[i,j] = xixi+1 . . . xj.

To write w ∈ x means that there exists some i, j ∈ Z such that x[i,j] = w.

Definition 2.2 (Shift Space). Let F be a (possibly infinite) set of “forbidden words” over A.
Then the shift space XF is defined to be the set of all sequences in AZ that do not contain any
word in F .

Example 2.3. The set AZ is a shift space. Indeed if we take F = ∅, the empty set, then no
words are forbidden and so we allow all possible sequences over A.

5

Remark 2.4. It is possible to have multiple sets of F generate the same shift space. For
example, working with binary sequences, we have that F1 = {100} generates the same shift
space as F2 = {1001, 1000}.

Example 2.5. The intersection of finite shift spaces over the same alphabet is itself a shift space.
Take x ∈ XF1 ∩XF2 . Then x contains no w ∈ F1 and x contains no w ∈ F2. This is equivalent
to saying x contains no w ∈ F1 ∪ F2, thus we have x ∈ XF1 ∩XF2 if and only if x ∈ XF1∪F2 i.e.
XF1 ∩XF2 = XF1∪F2 . Using induction we can extend this to countable intersections.

Lemma 2.6. Given F1 ⊆ F2, we have that XF1 ⊇ XF2.

Proof. Take an element x ∈ XF2 . Then x does not contain any word w ∈ F2, and thus x does
not contain any word w ∈ F1. Thus x ∈ XF1 , giving the desired containment.

From this, we can see the relationship between XF1∩F2 and XF1 ∪XF2 . Clearly, F1∩F2 ⊆ F1

and F1 ∩ F2 ⊆ F2. Using the above, this gives us that XF1∩F2 ⊇ XF1 and XF1∩F2 ⊇ XF2

respectively. Together, we get XF1∩F2 ⊇ XF1 ∪XF2 .

Example 2.7. Fix a nonempty, finite subset S ⊆ N = {0, 1, 2, . . . }. Then we can define a shift
space X = X(S) to be the set of all binary sequences of the form

x = . . . 10n−110n010n1

with ni ∈ S ∀i ∈ Z. In particular, there is an infinite number of 1’s in either direction. We can
see that for F = {10n1 : n ∈ N \ S} ∪ {0n+1 : n = maxs∈S(s)}, we get that X = XF .

For an infinite subset S ⊆ N , we must relax the condition for infinite 1’s in each direction
- and allow an infinite string of 0’s before and after. This is because, by the above description
of the points in X = X(S), we can show that 0∞ ∈ X. Assume 0∞ 6∈ X. Then there exists
a word w ∈ 0∞ such that w ∈ F . This means w must be of the form 0n, for some n. With
infinite S, for every n ∈ S, there exists some m ∈ S such that m > n, and so we have points in
X containing words of the form 10m1; thus they are allowed. But we also have that forbidden
word w is contained in 10m1 and so we have reached a contradiction. It follows that 0∞ ∈ X
when S infinite. The forbidden set in this case is simply F = {10n1 : n ∈ N \ S}.

These shift spaces are known as the S-gap shifts. Special cases include the (d, k) run-length
limited shift with S = {d, d+ 1, . . . , k}, the even shift with S = {0, 2, 4, . . . }.

Definition 2.8 (Shift Map). The shift map σ on the full shift AZ maps a point x to the point
y = σ(x) such that yi = xi+1 ∀i ∈ Z. That is

if x = . . . x−2x−1.x0x1x2 . . . then y = . . . x−1x0.x1x2x3

Thus every letter is shifted one place to the left. The inverse shift map σ−1 shifts every letter
to the right. We can write σn to denote the composition of n copies of the function.

We say a map φ : X → Y is shift commuting if σY ◦ φ(x) = φ ◦ σX(x) for every point
x ∈ X. Every shift space X is shift invariant, that is that σ(X) = X. This is clear from the
observation that the constraints on shift spaces are given purely in terms of forbidden words,
with no reference to the coordinates.

6

2.2 Languages

Definition 2.9 (Language). Let X ⊆ AZ, and let Bn(X) denote the set of all n-words that
occur in any of the sequences inside X. The language of X is the set

B(X) =
∞⋃
n=0

Bn(X),

that is, all possible “allowed” words in all points of X.

Not every set of words is the language of a shift space. In what follows, consider the com-
plement of a set of blocks over A as being taken relative to the set of all possible words over A,
or the language of the full A-shift. The third condition gives what is often a convenient way to
determine when two shift spaces are the same.

Proposition 2.10.

1. Let X be a shift space and L = B(X) be its language. If w ∈ L, then

(a) every subblock of w belongs to L, and

(b) there are nonempty blocks u and v such that uwv ∈ L.

2. A collection of blocks L is the language of a shift space if and only if L satisfies the above
condition.

3. The language of a shift space determines the shift space. In fact, for any shift space,
X = XB(X)c. Thus two shift spaces are equal if and only if they have the same language.

Proof. (1) If w ∈ L = B(X), then w occurs in some point x in X. Every subblock of w then
also occurs in x, and so is in L. There also exist nonempty blocks u, v ∈ x such that uwv ∈ x,
thus there exist u, v ∈ L and uwv ∈ L

(2) The implication is given by condition 1. For the converse, let L be a collection of blocks
satisfying 1. We must show this is the language of some shift space. The shift space will be XLc
and so we must show that L = B(XLc). If w ∈ B(XLc), then w occurs at some point of B(XLc),
so w is not a forbidden word, i.e. w is not in Lc. That is, w ∈ L. Thus B(XLc) ⊆ L.

Now we want to show L ⊆ B(XLc). For w ∈ L we can repeatedly apply 1b to get an arbitrarily
large block x[i,j] such that - by 1a - every subblock is in L. Thus there exist no n,m ∈ Z such
that x[n,m] contains a forbidden word, and so there exists a sequence x = (xi)i∈Z ∈ XLc . Since
w occurs in x, we have that w ∈ B(XLc) and thus L ⊆ B(XLc).

(3) Take some x ∈ X. The set B(X) contains all blocks occuring in all points of X and
so also in x specifically. So no block occuring in x is in B(X)c and hence x ∈ XB(X)c , showing
X ⊆ XB(X)c .

For the reverse inclusion, note that since X is a shift space, there exists a set F such that
X = XF . Note that F ⊆ B(X)c since B(X)c is the set of all words which do not appear in X.
Hence by Lemma 2.6, XB(X)c ⊆ XF = X.

The complement of the language B(XF) gives the largest possible set of forbidden words for
XF . The language of any subset X ⊆ AZ - whether X is a shift space or not - satisfies condition
1 of the above proposition, and so is in fact the language of some shift space containing X.

7

Corollary 2.11. Let X be a subset of the full A-shift. Then X is a shift space if and only if
x ∈ X exactly when x ∈ AZ and each x[i,j] ∈ B(X), for all i, j ∈ Z.

Example 2.12. In general, the intersection of two languages is not a language. Over binary
sequences, take the languages of XF1 and XF2 , with F1 = {10n1 : n ∈ N} and F2 = {0}.
Note that XF1 will be the set of all points containing either a single 1 or none at all. Then
L1 = B(XF1) and L2 = B(XF2) = {1n : n ∈ N}. Their intersection L1 ∩ L2 = {1} is clearly not
a language as it does not satisfy property 1(b) of the language proposition.

2.3 Sliding Block Codes

Definition 2.13 (Sliding block code). Let X be a shift space over A1. Fix n,m ∈ Z with
−m ≤ n and let Φ : Bm+n+1(X)→ A2 be a fixed block map from allowed (m+ n+ 1)-blocks in
X to symbols in A2. Then the map φ : X → AZ

2 given by

φ(x)i = Φ(x[i−m,i+n])

is called a sliding block code with memory m and anticipation n. We can see that φ(x)i depends
on a “window” of coordinates around xi and that we form y by “sliding” this window along one
coordinate at a time. We say φ is induced by Φ, with the formation denoted by φ = Φ

[−m,n]
∞ or

simply φ = Φ∞ if m and n are understood. If Y is a shift space over A2 and φ(X) ⊆ Y , we can
write φ : X → Y .

It will be useful to note that we can extend the “window size” of Φ to be arbitrarily large.
For M ≥ m and N ≥ n define Φ̂ : BM+N+1(X)→ A2 by:

Φ̂(x[−M,N]) = Φ(x[−m,n]).

Similarly it will prove useful to allow Φ to act on larger sections of a sequence at once. We
can define a different Φ̂ : Bm+n+k(X)→ Bk(A[N]

X) as follows:

Φ̂(x[−m,n+k−1]) = Φ(x[−m,n])Φ(x[−m+1,n+1]) . . .Φ(x[−m+k−1,n+k−1]).

If our sliding block code φ is induced by a block map Φ with no memory and anticipation
then it acts on a single letter at a time and we call it a 1-block code. In general we will not
always use the hat symbol to denote an alteration of the block map in such a way, but assume
Φ can be implicitly altered when needed.

Definition 2.14 (Higher block shifts). Let X be a shift space over the alphabet A and A[N]
X =

BN(X) be the collection of all allowed N -blocks in X. We can consider A[N]
X to be an alphabet in

its own right, and form the full shift (A[N]
X)Z. Define the Nth higher block code βN : X → (A[N]

X)Z

by
(βN(x))[i] = x[i,i+N−1].

Thus βN replaces the ith coordinate of x with the N -block of coordinates in x starting at position
i. Imagine the symbols in A[N]

X to be written vertically, read from bottom to top. Then the
image of x = (xi)i∈Z under β3 has the form

β3(x) = . . .

 x0x−1
x−2

 x1x0
x−1

 .
x2x1
x0

x3x2
x1

 · · · ∈ (A[N]
X)Z.

8

Remark 2.15. In fact, higher block codes are examples of sliding block codes. Let X be a shift
space over A and take m = 0, n = N − 1. It becomes clear that if we define Φ : BN(X)→ A[N]

X

with
Φ(a0a1 . . . aN−1) = a0a1 . . . aN−1

then the induced sliding block code Φ
[0,N−1]
∞ : X → A[N]

X is the Nth higher block shift. Note
that while this may look like the identity function, we are taking N -words from our domain and
assigning them letters in our alphabet A[N]

X . It just so happens that the letters in the output
correspond in a sensible way to our input.

Proposition 2.16. Let X and Y be shift spaces. If φ : X → Y is a sliding block code, then
φ ◦ σX = σY ◦ φ; i.e. the function is shift commuting.

Proof. Let φ be induced by the block map Φ : Bm+n+1(X)→ A with memory m and anticipa-
tion n. Then for any x ∈ X,

(σY ◦ φ)(x)[i] = φ(x)[i+1] = Φ(x[i+1−m,i+1+n]),

while
(φ ◦ σX)(x)[i] = φ(σX(x))[i] = Φ(σX(x)[i−m,i+n]) = Φ(x[i+1−m,i+1+n]).

We have shown the ith coordinates of the images agree for each i, so the images are equal.

We proceed to give a full characterization of sliding block codes. This will become useful
in the next section, when we come to give another characterization in terms of topological
properties.

Proposition 2.17. Let X and Y be shift spaces. A map φ : X → Y is a sliding block code if
and only if it is shift commuting and there exists N ≥ 0 such that φ(x)[0] is a function of x[−N,N],
for every x ∈ X.

Proof. Let φ be a sliding block code induced by block map Φ with memory m and anticipation
n. From the previous proposition, we have that φ commutes with the shift map, and directly
from the definition of such a code we can see that φ(x)[0] = Φ(x[−m,n]) = Φ̂(x[−N,N]) if we expand
the window size of Φ appropriately.

For the converse, we need to show there exists a block map Φ that induces the map φ : X →
Y . By hypothesis, φ(x)0 = f(x[−N,N]) for some N ≥ 0 and some f . Set Φ̂(x[−N,N]) = f(x[−N,N]).
This is clearly well defined, but it is necessary to show that Φ is defined for every (2N +1)-block
allowed in x. Take some w ∈ B(2N+1)(X). Then w = x[i,i+2N] for some x ∈ X and some i ∈ Z.
Now see y = σ(i+N)(x) ∈ X also, due to shift invariance of shift spaces. We have w = y[−N,N]

and so we have defined Φ̂(w) = f(y[−N,N]).

Finally we must show that Φ̂ induces our map φ; that is, that φ(x)i = Φ̂(x[i−N,i+N]). We use
the shift commuting property of φ to see

φ(x)[i] = (σiY ◦ φ(x))[0] = (φ ◦ σiX(x))[0]

= φ̂(σiX(x))[0] = Φ̂(σiX(x)[−N,N]) = Φ̂(x[i−N,i+N]).

as required.

9

2.4 Shifts as Metric Spaces

Shift spaces admit a topology once we have applied a suitable metric to the space. The metric
we will use in the following text captures the idea that points are closer together when they
share a larger central block.

Definition 2.18 (The metric on AZ). For x, y ∈ AZ, let k be the maximal integer such that
x[−k,k] = y[−k,k]. Then

ρ(x, y) =

{
2−k if x 6= y

0 if x = y

defines a metric. In other words, we find the largest k such that the central (2k + 1)-blocks of
x and y agree, and take 2−k as the distance (with the convention that if x0 6= y0 then k = −1).
This allows us to see AZ as a metric space.

Remark 2.19. The function ρ is indeed a metric. It is trivial to show that ρ(x, y) = 0 if and
only if x = y and that ρ(x, y) = ρ(y, x). It remains to show that the triangle inequality holds,
i.e. ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

If ρ(x, y) = 2−n then x[−n,n] = y[−n,n] and similarly if ρ(y, z) = 2−m then y[−m,m] = z[−m,m].
Set k = min({n,m}). Then x[−k,k] = z[−k,k] at least and so

ρ(x, y) ≤ 2−k ≤ 2−n + 2−m = ρ(x, y) + ρ(y, z).

as required.

Definition 2.20 (Cylinder set). Let X be a shift space and fix some word u ∈ B(X) and k ∈ Z.
Then the cylinder set is defined by

Ck(u) = {x ∈ X : x[k,k+|u|−1] = u};

that is Ck(u) is the set of sequences in X in which the word u occurs starting at position k.

Proposition 2.21. Cylinder sets are open.

Proof. Let Ck(u) be a cylinder set for fixed integer k and fixed word u. Set N = max({|k|, |k+
|u| − 1|}) and δ = 2−N . Then for every point x ∈ Ck(u), we have that the open ball Bδ(x) is the
set of all points which share at least their central (2N + 1)-block with x. This shared central
(2N + 1)-block is constructed to contain the word u, and so Bδ(x) ⊆ Ck(u).

Remark 2.22. Notice that for fixed integer k and fixed word u = u1u2 . . . un, we have

Ck(u) = Ck(u1) ∩ Ck+1(u2) ∩ · · · ∩ Ck+n−1(un).

Proposition 2.23. Cylinder sets are closed.

Proof. Fix an integer k. First, observe that for a given letter i, the cylinder set

Ck(i)
c = {x : xk = i}c = {x : xk 6= i} =

⋃
j 6=i

Ck(j),

is the union of open sets, and thus open.
Now we must show that [Ck(u)]c is open for a word u = u1u2 . . . un. We directly verify that

[Ck(u)]c = [Ck(u1) ∩ Ck+1(u2) ∩ · · · ∩ Ck+n−1(un)]c

= Ck(u1)
c ∪ Ck+1(u1)

c ∪ · · · ∪ Ck+n−1(un)c.

Each ui is a letter and so [Ck(u)]c is open as the union of open sets.

10

Remark 2.24. The set AZ is totally disconnected. Assume there exists a non-trivial connected
subset W . Then it contains two distinct points x and y. Points x and y must therefore differ
in at least one co-ordinate, say i. We can thus separate W by the two open, non-empty and
non-intersecting sets Ci(xi) which contains x and [Ci(xi)]

c which contains y.

Remark 2.25. It will be useful to observe that open balls are equivalent to certain ‘centred’
cylinder sets. See that for some given point x ∈ X and a given ε > 0, we have

Bε(x) = {y ∈ X : d(x, y) < ε}.

In fact, for 2−n ≤ ε < 2−(n−1), with n an integer

Bε(x) = B2−n(x).

due to the discrete nature of the definition of our metric. Such an open ball contains all sequences
which share a central (2k + 1)-block with x. Thus

Bε(x) = C−k(x[−k,k])

As such, the centred cylinder sets form a (countable) neighbourhood basis for x:

{Ck(x[−k,k]) : k ∈ Z}.

Similarly, a base for the topology is formed from the set of all such cylinder sets:

{Ck(x[−k,k]) : k ∈ Z, x ∈ X}.

In fact, we can also find a sub-base for AZ. Indeed, consider the set:

{Ck(i) : i ∈ A, k ∈ Z}.

Then finite intersections of these elements can generate any of the elements of our cylinder
base, as illustrated by Remark 2.22. Since each cylinder set Ck(i) can be regarded as an open
ball around some element of X by using the property of shift invariance, we can see that this
generates the same topology as the metric space.

Let us denote the projection map from bi-infinite sequences onto their symbol set as πk :
AZ → A. This returns the kth element of a sequence. Then it is interesting to note that we can
regard Ck(i) as the inverse projection map π−1k . The product topology Πi∈ZXi has a sub-base
consisting of sets that are the inverse projections of an open set in each Xi. If we take each Xi

to be our symbol set A endowed with the discrete topology, we can see that AZ and Πi∈ZA are
the same set sharing the same sub-base, and as such are equivalent topological spaces.

We proceed to give a topological characterization of shift spaces and of sliding block codes.

Definition 2.26 (Compactness in metric spaces). In a metric space M , compactness can be
characterized as follows: for every sequence {x(n)} in M , there exists a subsequence {x(kn)} with
kn > kn−1 and an x in M for which x(kn) → x as n→∞.

Theorem 2.27. Shift spaces are compact.

11

Proof. Let X be a shift space with the metric ρ and a sequence {x(n)} in X. We will find a
subsequence converging in X. Since we have an infinite sequence {x(n)} and only finitely many

symbols in A, there must be an infinite set of integers S0 such that x
(n)
[0] are equal for all n ∈ S0.

Similarly, there are only a finite number of 3-blocks over A. And so, looking at the subset
of points we already have from S0, we can find another infinite set S1 ⊆ S0 such that x

(n)
[−1,1] are

equal for all n ∈ S1. Continuing in the same way, for each k ≥ 1 we can find an infinite set
Sk ⊆ Sk−1 such that xn[−k,k] are equal for all n ∈ Sk.

Define x to be the point with x[−k,k] = x
(n)
[−k,k] for some n ∈ Sk. This suffices as a definition

because we can determine every coordinate in the sequence. It is also well defined, as for all
n ∈ Sk, the words x

(n)
[−k,k] are equal by construction, and for any two values of k, the two

definitions of x will agree where defined.
We inductively define kn as the smallest element of Sk which exceeds kn−1. This guarantees

increasing values of kn and so we have a true subsequence of n. By this definition, x(kn) will
share a central (2k + 1)-block with x, and so as k →∞, x(kn) → x under our metric.

It remains to show that x is a member of X. We can see that every subblock of x is taken
from a point in X and so is in B(X). Then by Corollary 1.11, x is in X.

Corollary 2.28. The full shift is compact.

Remark 2.29. For the next theorem, recall that in a compact metric space M , a subset E ⊆M
is comapct if and only if it is closed.

Theorem 2.30. A subset of AZ is a shift space if and only if it is shift-invariant and compact.

Proof. We have already seen that shift spaces are shift-invariant and compact. Take a subset
X ⊆ AZ that is shift-invariant and compact. It is a compact subset of a metric space and
therefore closed. Thus AZ \ X is open. Hence, for each y ∈ AZ \ X there is some open ball
containing y inside this set. Remembering open balls are equivalent to certain cylinder sets,
see that there exists some k = k(y) such that the cylinder set C−k(y[−k,k]) ⊆ AZ \ X. Take
F = {y[−k,k] : y ∈ AZ \X}. It is clear that this forbids every sequence outside of X and so we
have XF ⊆ X. It remains to show that X ⊆ XF . We will show the contrapositive. To this
end, let x 6∈ XF . Then there is some y[−k,k] ∈ x, which we can take to start at coordinate n. So
x[n,n+2k] = y[−k,k]. Thus σn+k(x)[−k,k] = y[−k,k] and so σn+k(x) 6∈ X. But by shift invariance we
also have x 6∈ X. Thus X = XF is a shift space.

Lemma 2.31. Let E and F be compact, disjoint subspaces of a metric space M . Then there
exists a δ > 0 such that ρ(x, y) ≥ δ whenever x ∈ E and y ∈ F .

Proof. Assume the statement is false. Then for every δ > 0 there exist points x ∈ E and
y ∈ F such that ρ(x, y) < δ. Taking δn = 1

n
for n ∈ N, construct sequences {xn} ⊆ E

and {yn} ⊆ F of points such that ρ(xn, yn) < δn. By compactness of E and F , we can find
convergent subsequences {xnk

} and {ynk
} with xnk

→ x ∈ E and ynk
→ y ∈ F as k → ∞.

Clearly ρ(xnk
, ynk

) < δnk
→ 0 and ρ(xnk

, ynk
) → ρ(x, y). Thus by the uniqueness of limits in

metric spaces, ρ(x, y) = 0 and thus x = y. However x and y are in disjoint metric spaces and so
this is a contradiction.

Theorem 2.32. Let X and Y be shift spaces and a function θ : X → Y to map between them.
Then θ is a sliding block code if and only if it is continuous and shift commuting.

12

Proof. We have already seen that sliding block codes are shift commuting. Here we show that
they are also continuous. Let θ : X → Y be a sliding block code, expanding the window so
that it has memory and anticipation k. Let x, x′ ∈ X share a central (2N + 1)-block. Their
images under φ will agree so long as the window is over only the shared co-ordinates. For
i ∈ [−N + k,N − k], φ(x)[i] and φ(x′)[i] will depend only on coordinates in the shared block and
thus be equal. So their images agree on 2N + 1 − 2k coordinates. Thus any points that share
a central (2M + 1 + 2k)-block will have images that share a central (2M + 1)-block - for any
M ∈ N. This is equivalent to the definition of continuity in metric spaces - statements about
shared central blocks correspond to statements about distance under our metric.

For the converse, we take a continuous and shift commuting θ : X → Y and wish to show
that it is a sliding block code. By Proposition 2.17 we have only have to show that, for every
x ∈ X, θ(x)0 is a function of x[−N,N] for some N ≥ 0. Let AX be the alphabet of X and AY
that of Y . For each b ∈ AY let C0(b) denote the cylinder set {y ∈ Y : y0 = b}. The sets C0(b)
are disjoint and closed, so their inverse images Eb = θ−1(C0(b)) are disjoint and closed. Closed
subsets of compact metric spaces are themselves compact, so each Eb is compact. Thus we can
use lemma 2.31 to find a δ > 0 such that points in different sets Eb are at least δ apart. Choose
n ∈ N such that 2−n < δ. Then any pair of points within 2−n of each other share a central
(2n + 1)-block and so must lie in the same set Eb. Thus we have that θ(x)0 = b = θ(x′)0 for
every x, x′ ∈ X such that x[−n,n] = x′[−n,n]. Hence the central coordinate of θ(x) depends only

on the central (2n+ 1)-block of x.

Definition 2.33 (Factor map). A surjective sliding block code from X to Y is called a factor
map. We say that Y is a factor of X.

Definition 2.34 (Conjugacy). A map between two shift spaces is a conjugacy if it is a sliding
block code with a sliding block code inverse. Two shift spaces are conjugate if there exists a
conjugacy between them.

Since sliding block codes are continuous, they preserve topological properties, and since they
are shift commuting, they preserve the shift invariance which is core to shift spaces. So it
seems that sliding block codes are indeed the appropriate homomorphisms here. Similarly, the
definition of conjugacy here is equivalent to a shift commuting homeomorphism from topology.

Remark 2.35. The higher block shift βN(X) : X → (A[N]
X)Z is a conjugacy, since it has a sliding

block inverse given by
(β−1N (y))[i] = f(yi),

with f : A[N]
X → A given by

f(a0a1 . . . aN) = a0.

Remark 2.36. Let θ : X → Y be a map between two compact metric spaces X and Y . Recall
that if θ is continuous and bijective, θ has continuous inverse.

Theorem 2.37. A map φ : X → Y between two shift spaces is a conjugacy if and only if it is
a bijective sliding block code.

Proof. For the implication, note that φ has an inverse and so it is trivial to show it is bijective.
For the converse, note that sliding block codes are continuous maps between compact metric

13

spaces, and when they are bijective they have a (continuous) inverse. It only remains to be
shown that φ−1 is shift-commuting. We can see that

φ−1 ◦ σY (y) = φ−1 ◦ σY ◦ φ ◦ φ−1(y) = φ−1 ◦ φ ◦ σX ◦ φ−1(y) = σX ◦ φ−1(y),

as required.

Theorem 2.38. The image of a shift space X under a sliding block code φ is itself a shift space.

Proof. We aim to show the image ofX is compact and shift invariant. Continuous maps between
metric spaces preserve the property of compactness, so the image of X under φ is compact.
Sliding block codes are continuous and so preserve compactness - thus φ(X) is compact. To
understand that shift invariance is preserved, see

σY ◦ φ(X) = φ ◦ σX(X) = φ(X),

by the shift commuting property of φ and the shift invariance of X. Thus φ(X) is also shift
invariant - and hence is itself a shift space.

Let φ : X → Y be a sliding block code. Then it is possible to find a conjugate shift X̂ such
that the corresponding map φ̂ : X̂ → Y is a 1-block code. Recoding φ in such a way can make
it easier to reason about - however, the cost is that the alphabet of the domain becomes more
complicated.

Proposition 2.39. Let φ : X → Y be a sliding block code with memory m and anticipation
n. Then there exists a higher block shift X [m+n+1], conjugate to X by ψ = σm ◦ βm+n+1, and a
1-block code φ̂ : X [m+n+1] → Y such that φ̂ ◦ ψ = φ. That is, the diagram below commutes.

X X [m+n+1]

Y

ψ

φ
φ̂

Proof. We have already seen that the higher block shift is a conjugacy and since σm has the
continuous inverse σ−m. Thus ψ is the composition of two conjugacies and as such is itself a
conjugacy. We can also see that

ψ(x)i =

xi+n. . .
xi−m


where the output is considered a single letter in the alphabet of X [m+n+1]. Define

Φ̂(

am+n

. . .
a0

) = Φ(a0 . . . am+n)

noting that Φ̂ has no memory or anticipation and so induces a 1-block code. We will call this
code φ̂ and check that it satisfies φ̂ ◦ ψ = φ. To see this, note that:

(φ̂ ◦ ψ(x))i = φ̂(. . .

 xn−1
. . .

x−m−1

 .
 xn
. . .
x−m

 . . .)i = Φ̂(

xi+n. . .
xi−m

) = Φ(xi−m . . . xi+n) = φ(x)i,

as required.

14

3 Shifts of Finite Type

3.1 Basic Properties and Characterization

Shifts of finite type are those that can be described by a finite set of forbidden blocks. We have
already encountered a number of these, for example the run-length limited shift or the full shift.
Note that these shift spaces may in general also be described by an infinite set of forbidden
blocks - in fact, the complement of the language is infinite for any proper subset of the full shift.
We will later see that these shifts have a simple representation as a finite directed graph.

Definition 3.1 (Shift of finite type). A shift space X is a shift of finite type if X = XF for
some finite set F of blocks.

Suppose we have a finite set of forbidden words F such that the longest word in the set is of
length n. Then we can form the set Fn of all blocks of length n which contain some word in F ,
and we will have XF = XFn . This is because if a word is forbidden in Fn, then it is forbidden
in F . On the other hand, if a word is forbidden in F then it will occur in a bi-infinite sequence
inside some block of length n - which is a forbidden word in Fn. For example, if A = {0, 1} and
F = {11, 000}, then F3 = {110, 111, 011, 000}. It will sometimes be convenient to assume this
procedure has been carried out, and all forbidden words have the same length.

If we take XF to be generated by such a set, with the words in F of length M + 1, then the
sequence x ∈ AZ is in XF exactly when x[i,i+M] 6∈ F for every i ∈ Z. This is because for x to
contain a word in F , and therefore be outside of XF , there must exist some i ∈ Z such that
x[i,i+M] ∈ F . Thus to detect whether or not x is in XF , we need only scan the coordinates of x
with a “window” of width N , and check if each block seen through this window is in the allowed
collection BN(X).

Definition 3.2 (M -step). A shift of finite type is M-step (or has memory M) if it can be
described by a collection of forbidden blocks, all of which have length M + 1.

Clearly if a shift is M -step, this also implies that it is of finite type. To motivate the above
definition, see that to determine if a sequence is in an M -step shift, you must scan with a window
size of M + 1, “remembering” the previous M coordinates. Note that an M -step shift is also
K-step for all K ≥M . A 0-step shift is the full shift.

Example 3.3. The even shift, defined in Example 2.7, can be generated by the set of forbidden
words F = {10m1 : m odd}. This is not a shift of finite type. To see this, suppose that it were -
then there exists a finite set F ′ that generates the even shift, and so an integer N ≥ 1 that is the
length of the longest word of F ′. Then consider the point x = 0∞102N+110∞. Every N -block of
this sequence is in BN(XF) and hence in BN(XF ′). Hence by the opening discussion, this should
be enough to determine that x is in the even shift. But we can clearly see an odd number of 0s
separate the two 1s and so we have reached a contradiction.

We proceed to give a characterization of shifts of finite type and show that the class is closed
under conjugacy.

Theorem 3.4. A shift space X is an M-step shift of finite type if and only if whenever uv, vw ∈
B(X) and |v| ≥M , then uvw ∈ B(X).

15

Proof. First, suppose that X is M -step; meaning that X = XF for finite set of blocks F , with
each block having length M + 1. Then we take points uv, vw ∈ B(X) such that |v| ≥ M and
aim to show uvw ∈ B(X). There must exist sequences x, y ∈ X such that uv ∈ x and vw ∈ y.
Since X is shift invariant, we can take these sequences to be such that v lies in the same position
in both; that is, x[0,n] = v = y[0,n]. We claim the point z = x(−∞,0)vy(n,∞) is in X. Since X is
M -step, if a forbidden word were to occur, it would occur in either x(−∞,0)v or in vy(n,∞), which
would produce a contradiction. Thus uvw ∈ z ∈ X and so uvw ∈ B(X).

For the converse, suppose that X is a shift space over A and M is an integer such that if
uv, vw ∈ B(X) with |v| ≥M , then uvw ∈ B(X). We produce a candidate F which is the set of
all (M + 1)-blocks over A not in BM+1(X). Showing X = XF will prove X is an M -step shift
of finite type.

If x ∈ X then every (M+1)-block of x will be in BM+1(X) and thus no words in F will occur
in x - so x is also in XF . This shows X ⊆ XF and so it remains to show XF ⊆ X. Again we take
x ∈ XF and aim to show it is in X. Such an x will have subblocks x[0,M], x[1,M+1] ∈ B(X) since
they are (M +1) length blocks not in F - i.e. they are in B(X). Since they overlap in M letters,
we can see that x[0,M+1] ∈ B(X) too, by hypothesis (taking v = x[1,M]). Now see that x[2,M+2]

is also in B(X) and overlaps with x[0,M+1] in M letters. Thus x[0,M+2] ∈ B(X) also. Repeated
application of this argument in both directions - along with the basic properties of languages -
shows that every subblock of x is in B(X), and thus x ∈ X by Proposition 2.11.

Theorem 3.5. A shift space that is conjugate to a shift of finite type is itself a shift of finite
type.

Proof. Suppose that X and Y are shift spaces, conjugate via φ : X → Y and with Y an M -step
shift of finite type. Then we aim to show that X is an N -step shift of finite type - and we will
do this using the above theorem. That is, we will take some arbitrary uv, vw ∈ B(X) such that
|v| ≥ N and show that uvw ∈ B(X), thus proving X is N -step. Essentially, the aim is to map
these uv, vw to Y where, if their images overlap enough, we can glue their images together.
Then, we wish to apply the inverse map to this block to find the uvw we seek.

Take φ to be induced by Φ and its inverse by Ψ. The technical difficulty here is that the
block maps Φ and Ψ produce shorter blocks each time they are applied. We can take each of Φ
and Ψ to have both memory and anticipation equal to k, and so we will lose 2k symbols each
time one of these maps is applied. Note that here we will allow their input to be longer than
2k+ 1, in which case we use the ‘extended’ versions of the block maps. This is allowable as long
as every (2k + 1)-sub-block of the input is an allowed word.

Take uv, vw ∈ B(X). Then by Proposition 2.10, we can find s, t ∈ B2k(X) such that
suv, vwt ∈ B(X). Then observe that Φ(suv) = u′Φ(v) and Φ(vwt) = Φ(v)w′ are in B(Y).
This is simply because for example suv must exist in some sequence x ∈ X and thus the se-
quence φ(x) ∈ Y must contain its image. If we have |Φ(v)| ≥ M , i.e. |v| − 2k ≥ M , then
these images overlap enough that we can use Theorem 3.4 to see that u′Φ(v)v′ ∈ B(Y). For
|v| ≥ 2k, we know that every (2k+1)-block of suvwt is allowed in B(X) (although we do not yet
know that the word is allowable as a whole). This tells us that our extended Φ can be applied
to suvwt. In fact u′Φ(v)v′ is nothing other than Φ(suvwt). Now we must carefully apply the
inverse map. Observe that

φ−1 ◦ φ(x)i = xi

which implies
Ψ(φ(x)[i−k,i+k]) = Ψ(Φ(x[i−2k,i+2k])) = xi

16

and thus the composition of these two functions merely selects the central block - minus 2k
symbols from either side. Since we started by choosing s, t to be of length 2k, then we can see
Ψ(Φ(suvwt)) = uvw. We have already seen that Φ(suvwt) ∈ B(Y) and thus this is a valid input
for Ψ so long as its length is greater than 2k + 1. Thus the output uvw is allowable in X - so
long as we take |v| ≥M + 4k.

3.2 Graphical Representations

It turns out that many shift spaces admit a graphical representation. In this section, we introduce
the different ways one can encode shift spaces into graphs, and how graphs can generate shift
spaces. First, we begin with the basic definitions of graph theory:

Definition 3.6 (Graph). A graph G consists of a finite set of vertices V , and a finite set of edges
E. Each edge e ∈ E has an initial and terminal vertex, denoted i(e) and t(e) respectively. We
allow multiple edges between a given pair of vertices, and we allow loops - that is, edges which
have the same initial and terminal vertex. A subgraph H of G is a graph given by a subset of
vertices and edges of G, with the initial and terminal vertices of each edge defined as before. By
the definition of a graph, we cannot inherit an edge from G without also inheriting its initial
and terminal vertices from the vertex set.

Definition 3.7 (Path). A path π = e1e2 . . . en on a graph G is a finite sequence of edges ei ∈ E
such that each edge starts at the vertex the previous edge terminates on - that is, t(ei) = i(ei+1)
for 1 ≤ i ≤ n− 1. We say the path π begins at i(e1) and terminates at t(en). The length of the
path is denoted |π| = n. A path that begins and ends at the same vertex is called a cycle.

Definition 3.8 (Graph homomorphism). Let G and H be graphs. A graph homomorphism from
G to H is a mapping which preserves initial and terminal states of the edges. It consists of a
pair of maps Ψ : VG → VH and Φ : EG → EH such that i(Φ(e)) = Ψ(i(e)) and t(Φ(e)) = Ψ(t(e))
for all edges e ∈ E. Thus if there is an edge e from v1 to v2 in G, then the edge Φ(e) will be
from Ψ(v1) to Ψ(v2).

Naturally we say that graphs are isomorphic when there is a bijective homomorphism between
them - that is, that we obtain H from G simply by relabelling vertices and edges, while preserving
initial and terminal points.

Definition 3.9 (Adjacency Matrix). Let G be a graph with vertex set V . For vertices v, w ∈ V ,
let Avw denote the number of edges in G with initial vertex v and terminal vertex w. Then
the adjacency matrix of G is A = [Avw]. Given an adjacency matrix A, we can reconstruct the
graph up to isomorphism - we denote such a reconstruction GA.

It turns out that the ordering of the vertices in the matrix is hardly important - any selection
of ordering will allow us to reconstruct the original graph up to isomorphism.

Proposition 3.10. Let G be a graph with adjacency matrix A, and let m ≥ 0.

1. The number of paths of length m from v to w is (Am)vw, the (v, w)-th entry of Am.

2. The number of cycles of length m in G is given by the trace of Am, i.e. the sum of the
diagonal elements, and this number equals the number of points in XG with period m (that
is, sequences which repeat themselves every m symbols).

17

Proof. (1) We can see this is true for m = 0 since the only paths of length 0 are the empty paths
at each vertex. It is also trivially true for m = 1 since the adjacency matrix is defined using
the number of paths between each vertex. We proceed by induction. Assume the statement is
true for paths of length m, and we aim to prove for paths of length m+ 1. Each path of length
m+ 1 from v to w takes the form of a path of length m from v to k followed by a path of length
1 from k to v. To count all these paths we take the sum

r∑
i=1

AmvkiAkiw

which is exactly the matrix sum for the coordinate (AmA)vw = Am+1
vw as required. By induction,

we achieve item (1).
(2) The first part follows from item (1) and the definition of a cycle. For the second part,

note that if π is a cycle of length m in G, then π∞ is a point of period m in XG, while if x ∈ XG

is a point of period m, then x[1,m] must be a cycle of length m in G. Thus there is a one-to-one
correspondence between cycles of length m in G and points of period m in XG.

Definition 3.11 (Edge Shift). Let G be a graph with the edge set E and adjacency matrix A.
Then the edge shift XG is the shift space over the alphabet A = E given by

XG = XA = {(ξi)i∈Z ∈ EZ : t(ξi) = i(ξi+1) for all i ∈ Z}.

That is, a bi-infinite sequence of edges is in XG exactly when the terminal state of each edge
is the initial state of the next - i.e. the sequence describes a bi-infinite walk on G. Note that a
word in B(XG) corresponds to a path in G. We now look at a similar construction based on the
vertices of a graph.

Proposition 3.12. For a graph G, the associated edge shift XG is a 1-step shift of finite type.

Proof. Let the alphabet A of X be the edge set E of G. Consider the finite collection

F = {ef : e, f ∈ A, t(e) 6= i(f)}

of 2-blocks over A. We can see from the definition of an edge shift that a sequence ξ ∈ AZ is in
XG exactly when no block of F occurs in ξ. The proposition is then immediate.

It may be the case that certain edges of a graph will never appear in an edge shift. Such a
situation will arise when, for example, an edge goes to a vertex from which no edges leave. Such
a vertex cannot be a part of a bi-infinite walk, and thus neither can its associated edges.

e

f

g

Figure 1: A shift of finite type generated by F = {ee, eg, ff, fe, gg} over A = {e, f, g}.

Definition 3.13 (Essential). We call a vertex v stranded when either no edges start at v or no
edges end at v. A graph is essential if no vertex is stranded.

18

Proposition 3.14. If G is a graph, then there is a unique subgraph H of G such that H is
essential and XG = XH .

Proof. The subgraph H is given by the set of edges e ∈ EG contained in some bi-infinite walk
on G and the set of vertices visited on such walks. By definition, H is a subgraph and the set
of bi-infinite walks on G and H are the same - thus XG = XH .

To see that H is unique, take H ′ to be another essential subgraph of G. Note that if we
removed any vertex or edge from H to create H ′, we would be removing a bi-infinite walk in
H and hence a sequence in XH ; thus XH′ 6= XH . If we added any vertices to H from G, we
would necessarily be adding stranded vertices. This is because we know they are not involved
in any bi-infinite walks, which must be because at least one of them is stranded - else, every
vertex would have at least one path coming into and leaving it, and thus a bi-infinite walk can
be found including any given vertex.

Definition 3.15 (Irreducibility in Graphs). A graph G is irreducible if for every pair of vertices
v, w ∈ V , there exists a path beginning at v and terminating at w.

Definition 3.16 (Irreducibility in Shift Spaces). A shift space is said to be irreducible if for
every pair u, v ∈ B(X) there exists a w ∈ B(X) such that uwv ∈ B(X).

Proposition 3.17. An essential graph is irreducible if and only if its edge shift is irreducible.

Proof. Let G be an irreducible graph, and π, τ ∈ B(XG). Recall that paths in G correspond to
words in XG. Suppose that π terminates at vertex v1 and τ begins at vertex v2. Then by the
irreducibility of G, we can find a path ω from v1 to v2 and thus πωτ is a path in G and hence a
word in B(XG).

Conversely, suppose that G is essential and XG is an irreducible shift. Since G is essential,
every vertex has at least one path leaving and another path entering it. Thus for a given pair
of vertices v1, v2, we can take edges f, g entering v1 and leaving v2 respectively to be paths of
length 1. These paths are then words in B(XG) and thus by the irreducibility of XG, we can
find a word ω ∈ B(XG) such that fωg ∈ B(XG). Then ω corresponds to a path in G from v1 to
v2 and thus G is irreducible.

While it may seem that edge shifts are special cases of shifts of finite type, we will see that
any such shift space can be recoded, using a higher block presentation, to an edge shift.

Theorem 3.18. If X is an M-step shift of finite type, then there is a graph G such that X [M+1] =
XG.

Proof. First, we deal with the case M = 0. Here, X is the full shift and we simply define G to
be as below - a single node with a loop corresponding to each letter of the alphabet.

1 . . . r

Figure 2: Graphical representation of {1, . . . , r}Z.

19

For the cases where M ≥ 1, we define the vertex set to be V = BM(X), the allowed M -blocks
in X. And we define the edge set E as follows: suppose v1 = a1a2 . . . aM and v2 = b1b2 . . . bM
are two vertices of G. If a2 . . . aM = b1 . . . bM−1 and if a1 . . . aMbM = a1b1 . . . bM is in B(X) then
call this (M + 1)-word w and draw exactly one edge from v1 to v2 labeled w. Otherwise, there
is no edge from v1 to v2.

From this construction, it is clear that any progressively overlapping sequence of (M + 1)-
blocks can be found as a walk in G. Since X [M+1] is exactly the set of these sequences, we have
that XG = X [M+1].

Definition 3.19 (Higher Edge Graph). Let G be a graph. For N = 1, define G[1] = G. For
N ≥ 2 we define the higher edge graph G[N] of G to have a vertex set equal to the collection
of all paths of lengths N − 1 in G, with the edge set as follows: suppose v1 = e1e2 . . . eN−1 and
v2 = f1f2 . . . fN−1, are two vertices of G. Then draw exactly one edge from v1 to v2 whenever
e2 . . . eN−1 = f1 . . . fN−2, labeled as e1e2 . . . eN−1fN−1 = e1f1 . . . fN−1, and none otherwise.

Proposition 3.20. Let G be a graph. Then (XG)[N] = XG[N].

Proof. The symbols for (XG)[N] are the N -blocks from XG, which are the paths of length N in
G. But these are also the symbols for XG[N] . A bi-infinite sequence of these symbols is in either
shift precisely when the N -blocks overlap progressively.

e f

g

ee ef

fg
gf

ge

(a) G[2]

ee

ef

ge

fg gfeee

eef efg

gee

gef

fge

fgf

gfg

(b) G[3]

Figure 3: Examples of higher edge graph, where G is taken to be the graph in Figure 1.

Definition 3.21 (Vertex Shift). Let G be a graph such that from one vertex to another, there
is at most one edge. Let A be its adjacency matrix. The vertex shift is the shift space X̂G over
the alphabet A = {v1, v2 . . . vn}, where vi is a vertex in G, and is defined by

X̂G = X̂A = {(vi)i∈Z ∈ AZ : Avivi+1
= 1 for all i ∈ Z}.

The following result establishes the relationship between edge shifts, vertex shifts and 1-step
shifts of finite type.

Proposition 3.22.

1. A shift of finite type is 1-step if and only if it is the vertex shift of some graph.

20

2. If a shift space is the edge shift of some graph, then it is also the vertex shift of some other
graph.

3. If X is an M-step shift of finite type, then X [M] is a 1-step shift of finite type, equivalently
a vertex shift. In fact, there is a graph G such that X [M] = X̂G and X [M+1] = XG.

Proof. (1) Let X be some 1-step shift such that X = XF , where we can take F to be a set
of 2-blocks. Then X = X̂G for the graph G with vertex set given by the alphabet of X, and a
single edge from vertices v1 to v2 if v1v2 ∈ B(X); otherwise no edge exists. For the converse, we
will see that vertex shifts are 1-step shifts. Let X̂G be the vertex shift of a graph G, and let A
denote its adjacency matrix. Then X is the shift space defined by the forbidden set

F = {vw : Avw = 0},

which is a set of 2-blocks.
(2) We saw in Proposition 3.12 that edge shifts are 1-step shifts. Thus by the previous proof,

we can find a graph such that its vertex shift is the same as a given edge shift.
(3) To justify the first statement, see that forbidden words in X can be taken to be of length

M+1, which will be regarded as a 2-block in X [M]. The graph referenced in the second statement
is the graph from Theorem 3.18; call it G. It remains only to see that X̂G = X [M]. It is clear that
the symbols of both these shifts are the allowed M -blocks X and that words (correspondingly,
the vertices of a walk on G) in X̂G occur exactly when the symbols progressively overlap. This
is precisely when words are allowable in X [M] also, thus we can see the shift spaces are the
same.

Although every 1-step shift can be represented as a vertex shift, we tend to use edge shifts
more often. The reasoning is that the same information can be presented much more concisely
in an edge shift - by having multiple edges between vertices, without the limitation of having
only a single edge from one vertex to another - and a vertex for every letter of the alphabet. For
example, the edge shift XA is the vertex shift X̂B for the following adjacency matrices:

A =

[
3 2
3 1

]
and B =



1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
0 0 0 0 0 1 1 1


.

It is important to note that although every edge shift is a shift of finite type (hence a vertex
shift), the reverse is not true.

Example 3.23. The binary shift space called the golden mean shift is given by F = {11} and
hence is a shift of finite type. However, it cannot be represented by an edge shift. If there were
a graph G such that XF = XG, then we can assume that it is essential. Such a graph would
clearly have two edges - one for each letter of the alphabet. This leaves few possibilities: either
G has one vertex, in which case its graph must correspond to the full shift, or G has two vertices
and XG is simply the two points (10)∞ and (01)∞. Any other configurations leaves some vertex
stranded.

21

0 100

01

10

Figure 4: Representation of a conjugacy of the golden mean shift.

However, we can recode the golden mean shift to a conjugate higher block shift, which can
then be represented on a graph - as illustrated above.

4 Sofic Shifts

4.1 Basic Properties and Characterization

We saw in the last section that shifts of finite type are conjugate to their higher block shifts,
which can be represented as either vertex or edge shifts on unlabeled graphs. Here, we will see
what types of shift space can be represented by labeled graphs.

Definition 4.1 (Labeled Graph). A labeled graph G is a pair (G,L), where G is a graph with
edge set E, each element of which the labeling function L : E → A assigns a letter from the
finite alphabet A. We call G the underlying graph of G.

For a labeled graph G = (G,L), we define the label of a walk π = e1 . . . en to be

L(π) = L(e1) . . .L(en),

and for a bi-infinite walk ξ = . . . e−1.e0e1 . . . ,

L∞(ξ) = . . .L(e−1).L(e0)L(e1)

Definition 4.2 (Labeled Graph Homomorphism). Let G = (G,LG) andH = (H,LH) be labeled
graphs. A labeled graph homomorphism from G to H is a graph homomorphism (Ψ,Φ) : G→ H
such that it preserves the labeling of edges - that is, LH(Φ(e)) = LG(e) for all edges of G.

Naturally a labeled graph homomorphism which is also a graph isomorphism, is known as a
labeled graph isomorphism. In a clear context, this is often just referred to as an isomorphism.

Definition 4.3 (Labeled Edge Shift). For a labeled graph G = (G,L), we define the labeled
edge shift XG to be

XG = {L∞(ξ) : ξ ∈ XG} = L∞(XG)

Note that L : E(G) → A is a block map from 1-words in the edge shift of G. Thus
L∞ : XG → XG is actually the induced sliding block code. Hence it is immediate that the set of
bi-infinite labeled walks on a graph do constitute a shift space - they are exactly the image of
the edge shift under L∞.

Definition 4.4 (Presentation). A labeled graph G is said to be a presentation of a shift space
X if X = XG. A walk π on G is said to be a presentation of L(π) if L(π) ∈ B(X).

22

Note that there are multiple presentations of any given shift space. A walk π on G will also
be a presentation of its label exactly when it can be extended to a bi-infinite walk on G. This
naturally occurs if the graph is irreducible.

Definition 4.5 (Sofic Shift). A shift space X is said to be sofic if there exists some labeled
graph G which is a presentation of X - that is, X = XG.

Theorem 4.6. Every shift of finite type is sofic.

Proof. Suppose that X is a shift of finite type. Then X is M -step, for some M ≥ 0. The proof
of 3.18 constructs a graph G such that X [M+1] = XG. For the case M = 0, we have that X is
the full shift and that it is presented by the unlabeled graph given in the proof. This can be
considered a labeled graph where the labeling function is simply the identity.

When M > 0, recall that the vertices of G are the M -blocks in X, and there exists an
edge from a1a2 . . . aM to b1b2 . . . bM if and only if a2 . . . aM = b1 . . . bM−1. In this case, the
edge is uniquely called a1 . . . aMbM = a1b1 . . . bM ∈ B(X). We choose a labeling function
L(a1a2 . . . bM) = a1 and show that the associated labeled graph G = (G,L) is a presentation of
X. Let βM+1 : X → X [M+1] = XG be the higher block code given by

βM+1(x)i = x[i,i+M].

We can see that L∞(βM+1(x))i = L(x[i,i+M]) = xi and thus L∞ is inverse to βM+1. Hence,

XG = L∞(XG) = L∞(βM+1(X)) = X

as required.

Corollary 4.7. A sofic shift is a shift of finite type if and only if it has a presentation (G,L)
such that L∞ is a conjugacy.

Proof. If X is a shift of finite type, then we have seen by the previous theorem that there exists
a labeled graph G = (G,L) such that X = XG. Further, in the graph that was constructed, L∞
had a sliding block inverse, and hence is a conjugacy.

Conversely, assume X is a sofic shift presented by (G,L) such that L∞ is a conjugacy. Then
X = XG is conjugate to XG via L∞, which is a shift of finite type. We have already seen that
shifts conjugate to shifts of finite type are themselves shifts of finite type, so we are done.

Theorem 4.8. A shift space is sofic if and only if it is a factor of a shift of finite type.

Proof. First, suppose that X is sofic with a presentation given by (G,L). Then L∞ : XG → XG
is surjective by definition of XG. Note that X = XG = L∞(XG) to see that X is a factor of the
shift of finite type XG.

For the converse, suppose we have a shift space X for which there is a factor code φ : Y → X
from an M -step shift of finite type Y . Let φ be induced by Φ with memory m and anticipation
n. Remembering Y is N -step for all N ≥ M , and that we can increase m if necessary, we can
consider Y to be (m+ n)-step. Thus there exists a graph G such that Y [m+n+1] = XG.

Now we will make use of Proposition 2.39, which says we can find a conjugacy ψ and a
1-block code φ̂ such that the following diagram commutes:

Y Y [m+n+1] = YG

X

ψ

φ
φ̂

23

We can take φ̂ to be induced by the map Φ̂ : Bm+n+1(X) → A where A is the alphabet of
X. Noting that the edges of G are (n + m + 1)-words we see we can label G with L = Φ̂ to
create a labeled graph G. These maps induce the same sliding block codes L∞ = φ̂. Noting that
L∞ = φ̂ = φ ◦ ψ−1, we can see that it is surjective as the composition of surjective functions.
Hence the image of YG under L∞ is all of X and thus X = L∞(XG) = XG, showing that X is
sofic.

Immediately from this, we can see that sofic shifts are actually the closure of shifts of finite
type under factor maps. This is because if we have a sofic shift Y , it is the image under some
factor φ of a shift of finite type X. Now take a factor map ψ from Y to some shift space Z.
Then Z can be written as the image of X under ψ ◦φ, a factor map itself, and hence it is in fact
sofic.

4.2 Follower Set Graphs

Definition 4.9 (Follower Set). Let X be a shift space and w be a word in B(X). The follower
set FX(w) of w in X is intuitively defined as the set of all words which can follow w in X, i.e.

FX(w) = {v ∈ B(X) : wv ∈ B(X)}.

The collection of all follower sets in X is denoted by

CX = {FX(w) : w ∈ B(X)}.

Each follower set is an infinite set of words, since every word in the language of X can be
extended indefinitely to the right. There can also be an infinite number of words in the language
of a shift space. However many words can also share the same follower set. A simple example is if
we take X to be the full shift: any word can be followed by any other word, thus FX(w) = B(X),
for every w ∈ B(X); hence CX is a singleton set.

Definition 4.10 (Follower Set Graph). Suppose X is a shift space over A such that CX is finite.
Then we can construct a labeled graph G = (G,L), called the follower set graph of X. Let the
vertices be the elements of CX - so each vertex represents a follower set (likely this is the follower
set of many different words). Let v1 = FX(w) ∈ CX and a ∈ A. If wa ∈ B(X), then there
exists a follower set FX(wa) which corresponds to a vertex - call it v2. In this case, construct an
edge from v1 to v2, labeled as a. Else if wa is not an allowed word, do nothing. Repeating this
process for every vertex and every a ∈ A yields a labeled graph G.

Note that this graph is indeed well defined - the construction is independent of the choice of
the representative follower set for a vertex. To see this, note that when FX(w) = FX(w′), then
wa is allowed if and only if w′a is allowed, as both w and w′ share the same follower set. Similarly
FX(wa) = FX(w′a) since each set contains exactly the words in FX(w) = FX(w′) which begin
with a.

Example 4.11. In Figure 5, the vertices labeled C0, C1 and C2 are associated with the three
distinct follower sets FX(0), FX(1) and FX(01) of the even shift respectively. In fact, it is easy
to check that

FX(w) =


C0 if w contains no 1’s,

C1 if w ends in 102k for some k ≥ 0,

C2 if w ends in 102k+1 for some k ≥ 0,

24

and so the above follower sets are in fact the only ones.

C0 C1

C2

0 1
1

0

0

Figure 5: Follower set graph for the even shift (defined in Example 2.7).

Proposition 4.12. If G is the follower set graph of some shift space X, then G is a presentation
of X, and thus X must be sofic.

Proof. To show that X = XG, it suffices by Proposition 2.10(3) to show that they have the
same langauge. First, suppose that u = a1a2 . . . an ∈ B(XG). This is equivalent to saying there is
a path π in G labeled as u. Assume without loss of generality that π starts at vertex FX(w). The
definition of G implies that since there is an edge labeled a1 from FX(w) to some other vertex,
and that wa1 ∈ B(X). Further the next vertex has as a representative FX(wa1). Continuing
this argument, we see that wa1a2 ∈ B(X) and inductively that wa1wa2 . . . wan = wu ∈ B(X).
Hence u ∈ B(X).

To prove the reverse inclusion, let u ∈ B(X). Again by Proposition 2.10(1)(b), we can find
some w, v, t such that wvut ∈ B(X) and |v|, |t| > |CX | = |V (G)|. Take v = v1 . . . vn. Since
w ∈ B(X) there exists a follower set FX(w), which is a representative of some vertex of G.
Similar to the idea above, we see that there must exist an edge labeled v1 from this vertex to
some vertex representing FX(wv1). Inductively, there is a path in the underlying graph labeled
vut in G. Since each of v is of length greater than the number of vertices in G, it must contain
a cycle. Hence, we can write v as αβγ where β is a cycle. And similarly for t, which we will
write as δωη, with ω as a cycle. Finally, let π be the underlying path labeled u, which we have
already seen to exist. Hence we know there exists the bi-infinite path β∞γπδω∞ in G, so its
labeling is a point of XG. Its labeling contains u and thus u ∈ B(XG) as required.

Theorem 4.13. A shift space is sofic if and only if it has a finite number of follower sets.

Proof. If a shift space X has a finite number of follower sets, we can construct the follower set
graph - which is a labeled graph presentation of X. Hence X is sofic.

For the forwards implication, let X be a sofic shift and so we can take labeled graph G =
(G,L) to be a presentation of X. For a word w ∈ B(X), we can find one or more presentations
of w in G. Let Tw denote the set of vertices at which these presentations terminate. Thus, the
labeled walks that can follow these presentations in G are exactly those that start at a vertex in
Tw, and these are exactly the words in X that can follow w. If the presentations of two words v
and w are such that Tv = Tw, then their follower sets will be equal. Since there is only a finite
number of subsets of the vertex set of G, there can only be a finite number of unique follower
sets.

25

4.3 Minimal Right Resolving Presentations

This section leads up to one of the main results of the paper. We will show that an irreducible
sofic shift has a unique minimal right resolving presentation, hence giving a canonical way to
present such a shift graphically. Further, we are able to give a characterization of this graph - it
is exactly the right resolving graph which is both irreducible and follower separated. This will
lead on to a method of finding this presentation given a follower set graph, then a more subtle
link between the two presentations given in the next section.

Definition 4.14 (Right Resolving). A labeled graph is called right resolving if, for each vertex
v, the edges starting at v carry different labels.

Right resolving presentations are important, because they help eliminate the ambiguity
around different presentations of a given word. With a right resolving graph, any word has
at most one presentation starting at each vertex. Another characterization of this is that the
restriction of the labeling function to edges coming from a given vertex is injective.

Corollary 4.15. Every sofic shift has a right-resolving presentation.

Proof. The follower set graph constructed in the previous section is a right resolving presenta-
tion by construction.

Definition 4.16 (Minimal Right Resolving Presentation). A minimal right resolving presenta-
tion of a sofic shift X is a labeled graph G such that X = XG and G has the fewest vertices
among all right resolving presentations of X.

Definition 4.17 (Follower Set of a Vertex). Let G be a labeled graph and v a vertex in G. Then
the follower set of v, FG(v) is the set of labels of paths beginning at v. That is,

FG(v) = {L(π) : π ∈ B(XG), i(π) = v}.

We say that G is follower separated if distinct vertices have distinct follower sets.

Definition 4.18 (Merged Graph). Let G be a labeled graph. Call two vertices v, w of G equiv-
alent if FG(v) = FG(w). This is an equivalence relation and so partitions the set of vertices.
We will now construct H, the merged graph of G. Let H have the set of vertices given by the
above equivalence classes; that is, each vertex of H is a set of vertices in G which share the same
follower set. There is an edge in H labeled a from I to J exactly when there is an edge labeled
a in G from some vertex in I to some vertex in J .

Lemma 4.19. Let G be a labeled graph and H the corresponding merged graph. Then H is
follower separated and XG = XH.

Proof. Let a vertex v in G be a representative of the equivalence class I - a vertex in H. We
first show that FG(v) = FH(I). A path in G gives rise to a path in H labeled similarly, by passing
to equivalence classes. Thus FG(v) ⊆ FH(I).

Next assume that FG(v) 6= FH(I) for at least one vertex v and corresponding I. Among all
such v and I, there are words in FH(I) but not FG(v). Select w = w1w2 . . . wn to be a word of
minimal length in this set. Then we have that FG(v)∩Ak = FH∩Ak for all k < n and all v, I, by
minimality of w. Note that there is an edge labeled w1 from I inH to some vertex J and hence an

26

edge in G labeled similarly from v′ ∈ I to w ∈ J . Now w2 . . . wn ∈ FH(J)∩An−1 = FG(w)∩An−1.
And so we also have a path in G starting at v′ and labeled w i.e. w ∈ FG(v

′) = FG(v),
contradicting our initial choice of w. Hence FG(v) = FG(I).

It is now clear that H is follower separated, since if two vertices in H share the same follower
set, we also have that their equivalence class representatives in G share the same follower set -
hence, by the definition of the vertices of H, these two vertices must be the same.

Since B(XG) is the union of the follower sets in G over each vertex, and similarly for H, we
immediately obtain B(XG) = B(XH) and hence that XG = XH.

Lemma 4.20. Let G be a labeled graph and H the corresponding merged graph. If G is irreducible
then H is irreducible. Further, if G is right resolving then H is right resolving.

Proof. First, assume G is irreducible. Let I, J be distinct vertices of H. Then v ∈ I and w ∈ J
are vertices of G. By the irreducibility of G, there is a path π from v to w and passing to
equivalence classes gives a path in H from I to J .

Next, assume that G is right resolving. Whenever there is an edge labeled a from some I to
J in H, there must be some similarly labeled edge from some v ∈ I to some w ∈ J in G. Since
G is right resolving, this is the only edge from v labeled a. Note that paths that start at w are
exactly the subset of paths that start at v which begin by moving from v to w over this edge.
Hence

FG(w) = {w1 . . . wn : aw1 . . . wn ∈ FG(v)}.

Now assume there is a second edge labeled a from I to some other vertex J ′. Then, as above,
there is another edge in G labeled a from some v′ ∈ I to some w′ ∈ J ′. Again, we have that

FG(w
′) = {w1 . . . wn : aw1 . . . wn ∈ FG(v′)}.

Since FG(v) = FG(v
′) we have that FG(w) = FG(w

′) and hence

FH(J) = FG(w) = FG(w
′) = FH(J ′)

proving that J = J ′, by the property of H being follower separated. Thus, any edged labeled
a coming from I must terminate at the same vertex J . But by the definition of H, there is at
most one edge labeled a from I to J . Hence H is right resolving - there is at most one edge with
a given label from each vertex.

Proposition 4.21. A minimal right resolving presentation of a sofic shift is follower separated.

Proof. Let G be a minimal right resolving presentation of a sofic shift X. If G is not follower
separated, then the merged graph H would be a right resolving presentation of X with fewer
vertices, contradicting minimality.

Lemma 4.22. Suppose that X is an irreducible sofic shift, and that G is a minimal right resolving
presentation of X. Then G is an irreducible graph.

Proof. Let G = (G,L) be a minimal right resolving presentation of X. We first show that for
every vertex I ∈ V (G), there is a word uI ∈ B(XG) such that every path in G presenting uI
contains I. Suppose this is false for some vertex I. Then every word is presented by a path
that does not pass through I, and hence I and all edges incident to it can be removed from G

27

to create a presentation H of X. The graph H is right resolving and has fewer vertices than G,
contradicting minimality.

Now let I and J be distinct vertices of G and uI and uJ words satisfying the above property.
By the irreducibility of X, there exists a word w such that uIwuJ ∈ B(X). So there exists a
path π in G presenting uIwuJ . But the subpath of π presenting uI and uJ contains vertices I
and J , and thus there exists some subpath of π from I to J .

Proposition 4.23. A sofic shift is irreducible if and only if it has an irreducible presentation.

Proof. Let X have an irreducible presentation G = (G,L). Then words u,w ∈ B(XG) = B(X)
have presentations in XG and thus underlying paths π, τ in G. By the irreducibility of G, there
is a path ω from t(π) to i(τ). Let v = L(ω). Then

L(πωτ) = uvw ∈ B(XG)

since in an irreducible graph, every path is part of a bi-infinite walk. Hence XG is irreducible.
For the converse, assume XG is irreducible. We know that a finite right resolving presentation

exists for XG and hence a minimal right resolving presentation also exists. By the above lemma,
such a graph is also irreducible.

Definition 4.24 (Synchronizing Word). Let G = (G,L) be a labeled graph. A word w ∈ B(XG)
is a synchronizing word for G if all paths in G presenting w terminate at the same vertex. We
say that w focuses to this vertex.

Lemma 4.25. Suppose that G is a right resolving labeled graph, and that w is a synchronizing
word for G. Then any word of the form wu in B(XG) is also synchronizing for G. If w focuses
to I, then FXG(w) = FG(I).

Proof. For the first statement, let w focus to I. Any path presenting wu has the from πτ ,
where π terminates at I. But by the right resolving property, there is only one path starting at
I labeled u, thus wu focuses to t(τ) and so is synchronizing.

For the second statement, note that any word following w is presented by some path starting
at I. And the converse also holds: any path starting at I presents some word which can follow
w.

Proposition 4.26. Suppose that G is a right resolving graph that is follower separated. Then
every word u ∈ B(XG) can be extended on the right to a synchronizing word uw ∈ B(XG).

Proof. For any word w ∈ B(XG), let T (w) denote the set of terminal vertices of all paths
presenting w. If T (u) is just a single vertex then u is synchronizing and w can be any word such
that uw ∈ B(XG).

Suppose then that T (u) has more than one vertex, and let I and J be distinct vertices in
T (u). Then FG(I) 6= FG(J), as G is follower separated, and so there exists some word in one set
but not the other. Without loss of generality, we can assume v1 ∈ FG(I) but v1 6∈ FG(J). Since
G is right resolving, there is at most one labeled path labeled v1 starting at each vertex of T (u).
These are all the paths presenting uv1. Each vertex in T (u) corresponds to at most one vertex
in T (uv1) via these paths. Since v1 6∈ FG(J), it follows that T (uv1) does not contain J , and
hence has fewer elements than T (u). We can continue inductively, and since T (u) was a finite
set to begin with, eventually we will reach some T (uv1 . . . vn) with only one element. Then we
have found our w = v1 . . . vn.

28

Proposition 4.27. If G and G ′ are irreducible, follower separated, right resolving presentations
of a sofic shift, then G and G ′ are isomorphic as labeled graphs.

Proof. First we find a word that is synchronizing in both graphs. By applying Proposition
4.26 to our first graph we can find a word u1 that is synchronizing for G. Next, we can apply
the Proposition again - this time to our second graph - to find an extension w = u1u2 that is
synchronizing in G ′. By Lemma 4.25, w remains synchronizing in G also.

We now use this synchronizing word to identify vertices and inductively construct a labeled
graph isomorphism from G to G ′. Note that w focuses to some I0 ∈ V (G) and to some I ′0 ∈ V (G ′).
Now let Gk and G ′k be the subgraphs consisting of all vertices at most k edges away from these
I0 and I ′0 respectively, and all edges contained in paths of length at most k starting from these
base vertices.

The basis of our induction is to note that G0 and G ′0 are simply the lone vertices I0 and I ′0 and
hence are trivially isomorphic. Next we assume that the subgraphs Gk and G ′k are isomorphic
via (Ψk,Φk) and aim to prove that there exists an isomorphism between graphs Gk+1 and G ′k+1

as well. Since our graphs are irreducible and have a finite number of vertices, this will suffice to
show that the entire graphs G and G ′ are isomorphic.

Take a vertex Ik ∈ V (Gk). Then by irreducibility, there exists some path π from I0 to Ik in Gk
labeled as, say, v. By our assumption of isomorphism, we can find a corresponding I ′k ∈ V (G ′k)
and corresponding path π′ from I ′0 to I ′k also labeled v. Note that by Lemma 4.25,

FG(Ik) = FXG(wv) = FXG′ (wv) = FG(I
′
k).

This holds regardless of our choice of paths π and π′ or their labellings. Hence if we take some
edge e out of Ik labeled a, there must exist an edge e′ out of I ′k also labeled a. By the right
resolving property, both of these edges are unique. Take edges e and e′ to terminate at vertices
J and J ′ respectively. Then we set Ψk+1(e) = e′ and Φk+1(J) = J ′. Repeat for each letter in the
alphabet and for each vertex in Gk. In this way, we can account for all vertices in Gk+1 and each
will map to some vertex in G ′k+1. It is clear this mapping respects the initial and terminating
vertices of its edges, as well as the labeling, and hence is indeed a graph homomorphism from
Gk+1 to G ′k+1.

Also note that since there exists a path labeled va from I0 to J and I ′0 to J ′, we have that

FG(J) = FXG(wva) = FXG′ (wva) = FG(J
′).

This forces the mapping to be well defined, since if a vertex were mapped to two different places,
it would contradict the follower separation of G ′. By a similar argument, the mapping is injective
- else a contradiction of the follower separated property of G arises.

The mapping is also surjective. Take some vertex J ′ in G ′k+1. Then there exists some I ′k in
G ′k and an edge e′ labeled as, say, a, from I ′k to J ′. This I ′k has a corresponding Ik in G by the
assumption of isomorphism. Since FG(Ik) = FG′(I

′
k), there exists an edge e labeled a from Ik,

which terminates at some J in Gk+1. This J will be mapped to J ′. Thus our map is indeed an
isomorphism, and the induction completes our argument.

Theorem 4.28. Any two minimal right resolving presentations of an irreducible sofic shift are
isomorphic as labeled graphs.

29

Proof. If G and G ′ are both minimal right resolving presentations of an irreducible sofic shift,
then by Lemma 4.22 they are both irreducible graphs. By Proposition 4.21, minimal right resolv-
ing graphs are follower separated, hence G and G ′ have this property also. Thus by Proposition
4.27, they are both isomorphic as labeled graphs.

Corollary 4.29. Let X be an irreducible sofic shift, and G a right resolving presentation of X.
Then G is the graph that is minimal among all right resolving presentations of X if and only if
G is irreducible and follower separated.

Proof. If G is the minimal right resolving presentation of an irreducible sofic shift, by Lemma
4.22 it is an irreducible graph. Proposition 4.21 says that right resolving minimal graphs are
follower separated, so G has this property also. For the converse, take G ′ to be an irreducible,
follower separated and right resolving presentation of X, and G the minimal right resolving
presentation described above. Then by Proposition 4.27, the two graphs are isomorphic.

Corollary 4.30. Let X be an irreducible sofic shift and let G be an irreducible, right resolving
presentation of X. Then the merged graph of G is the minimal right resolving presentation of
X.

Proof. Apply Lemma 4.19, Lemma 4.20 and Corollary 4.29.

Example 4.31. The following counterexample is due to N. Jonoska [5], and shows that Theorem
4.28 can fail for reducible shifts. Let G be the graph (a) in Figure 6, below, and H be graph
(b). It is simple enough to check by inspection that the graphs are right resolving. Further, we
can see they are not isomorphic since H has a self-loop labeled a and G does not. However, we
will also show that they are both presentations of the same shift space, and that no graph with
fewer vertices can be a right resolving presentation of this shift.

First, we show that B(XG) = B(XH), hence showing that XG = XH. Any path in G can be
extended to one which cycles through vertices 1 and 2, later dropping down to vertices 3 or 4
before continuing. Hence B(XG) consists of all subwords of the following words:

v1 = akbcm1bacm2bacm3ba . . . ,

v2 = akbacn1bacn2bacn3ba . . . ,

where exponents k,mi, nj are integers greater than or equal to 0. Similarly, there are three types
of paths on H which contain all words - which path depends on which edge exits vertex 1. Thus
B(XH) consists of all subwords of the three types of words:

w1 = akbacp1bacp2bacp3ba . . . ,

w2 = akbccq1bacq2bacq3ba . . . ,

w3 = akbbacr1bacr2bacr3ba . . . ,

where again the exponents are greater than or equal to 0. Words of type w1 correspond to those
of type v2. Type w2 corresponds to type v1 where m1 = 1 + q1 and w3 corresponds to type v1
with m1 = 0. This proves the languages are equal.

Next we show that no right resolving graph with fewer vertices can present this shift space. It
is trivial to see that a graph with zero or one vertices cannot present it. For the less simple cases,

30

observe that there are three distinct follower sets, FX(aa), FX(c) and FX(cb), each containing a
word which is in neither of the other two. For example, we have

aab ∈ FX(aa) {FX(c) ∪ FX(cb)}, c ∈ FX(c) {FX(aa) ∪ FX(cb), }ac ∈ FX(cb) {FX(aa) ∪ FX(c)}.

Assuming we can find a minimal right resolving presentation with fewer than 4 vertices, we know
there must exist some presentation within it of the word aaaab. Hence there is a vertex where a
presentation of aa terminates and where a presentation of aab begins. Such a vertex cannot also
be the terminating point of presentations of c or cb, since doing so would mean aab ∈ FX(c) or
aab ∈ FX(cb) respectively. A similar argument carries for the remaining two follower sets, hence
showing that such a graph cannot have only two vertices, and further that the follower set of
each one of the three vertices of the graph is equal to one of the distinct follower sets above.
It also follows that aab can only be presented with a path starting at the vertex with follower
set FX(aa). However, since we can also see that FX(aab) = FX(c) ∪ FX(cb), there must be
paths from vertex FX(aa) to both vertices FX(c) and FX(cb), contradicting the right resolving
property.

1 2

3 4

a

b

a

b

c

b

a

(a)

1 2

3 4

ab

a c

b

c

b

a

(b)

Figure 6: Two reducible, minimal right resolving graphs presenting the same shift

In fact, there is a way to obtain the minimal right resolving presentation of an irreducible
sofic shift from its follower graph [7].

Definition 4.32 (Intrinsically synchronizing). Given an irreducible shift space X, a word v ∈
B(X) is intrinsically synchronizing if whenever uv ∈ B(X) and vw ∈ B(X), then uvw ∈ B(X).

Lemma 4.33. Let X be an irreducible sofic shift and G = (G,L) be its minimal right resolving
presentation. Then v ∈ B(X) is synchronizing in G if and only if v is intrinsically synchronizing.

Proof. If uv ∈ B(X) and vw ∈ B(X) then there are presentations of uv and vw - say, τ and
ηµ respectively, where L(τ) = uv, L(η) = v and L(µ) = w and each is part of some bi-infinite
walk. If v is synchronizing, then every presentation of v terminates at some vertex I, so τ and
η both terminate at I. Hence µ begins at I and τµ is a path labeled uvw. Further, this path
can be extended to become part of a bi-infinite walk on G and so its label uvw ∈ B(X).

For the converse, we aim to show that an intrinsically synchronizing word is synchronizing
in G. In fact we prove the contrapositive - that if a word is not synchronizing then it is not

31

intrinsically synchronizing. Suppose a word v ∈ B(X) is not synchronizing. Then it has two
presentations τ and ω which terminate at distinct vertices I and I ′ respectively. The presentation
G is follower separated by Proposition 4.21 and so F (I) 6= F (I ′). Without loss of generality,
there exists some w ∈ F (I) \ F (I ′). Note vw ∈ B(X).

Since G is right resolving and τ and ω present the same word, i(τ) 6= i(ω). By Proposition
4.26, we can find some synchronizing word u′ in G, and by the irreducibility of G we can extend
this word to u′u′′ terminating at i(ω). By Lemma 4.25, u′u′′ remains synchronizing in G. Setting
u = u′u′′, it is clear that uv ∈ B(X). Since uw is also synchronizing, all its presentations
terminate at I ′. However we chose v 6∈ F (I ′) and so uvw 6∈ B(X).

Theorem 4.34. The minimal right resolving presentation of an irreducible shift X is exactly
the labeled subgraph of the follower set graph of X formed by using only the follower sets of
intrinsically synchronizing words, and the edges between them.

Proof. Denote with G the follower set graph of X, and H the subgraph of G formed by taking
only the vertices representing follower sets of intrinsically synchronizing words, and the edges
between these vertices. First we show that H actually presents X. Since H ⊆ G, we automat-
ically have that XH ⊆ XG = X. To show the reverse inclusion, we show that B(X) ⊆ B(XH).
Consider any w ∈ B(X). Since G is right resolving, we can find some synchronizing word u for
it. By the irreducibility of X, there exists a word v ∈ B(X) such that uvw ∈ B(X), In fact,
each of uv, uvw1, uvw1w2, . . . , uvw are also synchronizing in G. The first half of the argument
from the previous lemma applies to any presentation of X, so each of the above words is also
intrinsically synchronizing for X. Hence F (uv) is a vertex in H, as is F (uvw1), . . . F (uvw), and
by the definition of H there exists a path visiting each of these vertices in order, labeled w.
Hence if we can show H to be irreducible, we also have that XH = X.

In fact, by Corollary 4.29, showing H is right resolving, irreducible and follower separated
also shows it is the minimal right resolving graph of X. The right resolving property is inherited
immediately from G.

To see thatH is irreducible, take any two distinct vertices F (u) and F (w) ofH, where u and v
are intrinsically synchronizing words. Note that the follower sets of these vertices may no longer
be the follower sets they represented in G. Since X is irreducible, there exists some v ∈ B(X)
such that uvw ∈ B(X). Since u is intrinsically synchronizing for X, the above lemma implies
that it is synchronizing in the minimal right resolving presentation (there is no need to assume
here that H is this graph). Hence any extension, and specifically uvw, is also synchronizing in
this graph, and so again by the above lemma, we see that uvw remains intrinsically synchronizing
in H. Thus there is a vertex in H labeled F (uvw), and so a path from F (u) to F (uvw) labeled
w. Further, since w and uvw are synchronizing in the minimal right resolving presentation of
X, they both focus to the same vertex, and so by Lemma 4.25, F (w) = F (uvw). Thus we have
found a path between two arbitrary vertices of H.

Finally, we show that H is follower separated. Consider two distinct vertices of H, labeled
F (u) and F (v), for intrinsically synchronizing words u and v. Without loss of generality then,
there exists some w ∈ F (u) \ F (v). Hence no path with label w leaves the vertex labeled F (v)
in G and hence in H. However there is a path labeled w leaving F (u) in G, and further uw is
intrinsically synchronizing, so F (uw) is a vertex in H. This implies that there exists a path from
F (u) to F (uw) in H labeled w. So there is a path labeled w from F (u) but there cannot be a
path from F (v) with the same label. Hence the follower sets of our arbitrary vertices F (u) and
F (v) are different, and H is follower separated.

32

4.4 Entropy

In this section, we introduce entropy, an invariant under unlabeled graph isomorphism. It may
be viewed as a measurement of “information capacity” of a shift space - or of ability to transmit
messages. We present only the results needed to prove our main theorem relating to unlabeled
isomorphism of follower set graphs.

Definition 4.35 (Entropy). Let X be a shift space. The entropy of X is defined by

h(X) = lim
n→∞

1

n
log2 |Bn(X)|.

In the special case that X = ∅, the definition gives us that h(∅) = −∞.

The number of n-blocks appearing in sequences from X gives us some measure of complexity.
The definition of entropy given above roughly summarizes the growth rate of comlexity as n
increases. In what follows, we will assume base 2 for all logarithms.

To know that we are working with a well defined quantity, we must show that this limit
always exists.

Lemma 4.36. Let (an)n∈N be a sequence of non-negative numbers such that am+n ≤ am +an for
all m,n ∈ N Then limn→∞ an/n exists and equals infn∈N an/n.

Proof. Let α = infn≥1 an/n. By definition, an/n ≥ α for all n. Fix ε > 0. We aim to show that
an/n < α + ε for all large enough n, hence proving the lemma. We can find some k for which
ak/k < α + 1

2
ε, for if we could not then α + 1

2
ε would be a greater upper bound than α. Then

for 0 ≤ j < k and m ≥ 1 we have that

amk+j
mk + j

≤ amk + aj
mk + j

≤ amk
mk

+
aj
mk

By the hypothesis, we inductively get that amk ≤ mak, and hence can obtain

a(m+1)k = amk+k ≤ amk + ak ≤ mak + ak = (m+ 1)ak.

The above holds for all k. Hence we can continue our chain of inequalities with

amk
mk

+
aj
mk
≤ mak

mk
+
ja1
mk
≤ ak

k
+
a1
m
< α +

1

2
ε+

a1
m
.

Hence if n = mk + j is large enough that a1/m < ε/2, then an/n < α + ε as required.

Proposition 4.37. If X is a shift space, then h(X) exists as a limit.

Proof. For integers m,n ≥ 1, a block in Bm+n(X) is uniquely determined by its initial m-block
and the subsequent n-block, so that

|Bm+n(X)| ≤ |Bm(X)| · |Bn(X)|.

We may not get equality, as some blocks in Bm+n(X) may be forbidden even if their initial m
letters and final n letters considered separately are allowable. Hence, applying logarithms we
see that

log |Bm+n(X)| ≤ log |Bm(X)|+ log |Bn(X)|.
Applying the previous lemma to the sequence ak = log |Bk(X)| yields the result.

33

Example 4.38. Let X be the full r-shift. Then |Bn(X)| = rn, so h(X) = log r.

Proposition 4.39. If Y is a factor of X, then h(Y) ≤ h(X).

Proof. Let φ : X → Y be a factor code induced by Φ
[−m,k]
∞ , for a block map Φ and integers m

and k. Then every block in Bn(Y) is the image under the extension of Φ of a block in Bn+m+k(X),
since φ is surjective. Hence |Bn(Y)| ≤ |Bn+m+k(X)| and

h(Y) = lim
n→∞

1

n
|Bn(Y)| ≤ lim

n→∞

1

n
|Bn+m+k(X)|

= lim
n→∞

(
n+m+ k

n

)
1

n+m+ k
|Bn+m+k(X)| = h(X),

since the limit of products is the product of limits.

Corollary 4.40. If X is conjugate to Y , then h(X) = h(Y).

Proof. Let φ : X → Y be a conjugacy. Then Y is a factor of X via φ and X is a factor of Y
via φ−1. Hence the above proposition tells us that h(Y) ≤ h(X) and h(X) ≤ h(Y).

Example 4.41. The full 2-shift has a different entropy to that of the full 3-shift, hence the two
shift spaces cannot be conjugate.

Proposition 4.42. Let G = (G,L) be a right resolving labeled graph. Then h(XG) = h(XG).

Proof. The sliding block code induced by the labeling function, L∞, is a 1-block factor code
from XG to XG, so by Proposition 4.39 h(XG) ≤ h(XG). Since G is right resolving, there can be
at most one presentation of a given word starting at each vertex. Hence if G has k states, then
any block in Bn(XG) has at most k presentations. Equivalently, there are at most k paths in G
and hence at most k words in Bn(XG), thus k|Bn(XG)| ≥ |Bn(XG)|. Rearranging appropriately
we achieve

lim
n→∞

1

n
log |Bn(XG)| ≥

1

k
lim
n→∞

1

n
log |Bn(XG)|,

and since k ≥ 1 we have shown that h(XG) ≥ h(XG).

Corollary 4.43. Let G = (G,L1) and H = (H,L2) be two right resolving labeled graphs such
that their underlying graphs G and H are isomorphic. Then h(XG) = h(XH).

Proof. The number of n paths on G and H are the same, hence |Bn(XG)| = |Bn(XH)|. By the
definition of entropy, we thus get that h(XG) = h(XH), but since Proposition 4.42 tells us that
h(XG) = h(XG) and h(XH) = h(XH), we are done.

Remark 4.44. In the following theorem, we use, but do not prove the result that for an
irreducible shift space X and proper subshift Y of X, h(Y) < h(X).

Theorem 4.45. Let X and Y be irreducible sofic shift spaces, with G and H their respective
follower set graphs and Gmin ⊆ G and Hmin ⊆ H their respective minimal right resolving graphs,
found as in Theorem 4.34. If G and H are isomorphic as unlabeled graphs, then Gmin and Hmin

are isomorphic as unlabeled graphs.

34

Proof. Let G, H and Gmin, Hmin be the respective underlying graphs of G, H, Gmin and Hmin.
Now let Ω be the unlabeled isomorphism from G to H. Define H ′ to be Ω(Gmin), and H′ to be
the corresponding labeled subgraph of H. We wish to show that H ′ is isomorphic to Hmin.

First, we shall assume that H′ does not present Y , and hence that H′ presents a proper
subshift of Y . Hence, using the above Corollary and stated result, we can achieve the following
contradiction:

h(Y) = h(XH) = h(XG) = h(XGmin) = h(XH′) < h(Y).

So we have that H′ is presentation of Y .
Moreover, H′ is a right resolving presentation of Y . Hence showing that it is minimal will

prove that it is isomorphic to Hmin, and the result follows. Assume that this is false, and hence
H′ has strictly more vertices than Hmin. Then define G′ to be Ω−1(Hmin) and G ′ to be the
corresponding labeled subgraph of G. By the above argument, G ′ will thus present X, but then

|V (G ′)| = |V (Hmin)| < |V (H′)| = |V (Gmin)|

shows that G ′ is a smaller right resolving presentation of X than is Gmin, which is a contradiction.

Note that the uniqueness of the minimal presentation only gets us labeled isomorphism of H′
andHmin. However, it is entirely possible that these are two different, but isomorphic, subgraphs
of H. The following result is in fact an original result, found by the author of this paper, dealing
with this issue.

Theorem 4.46. In the above setup, we actually achieve that H′ = Hmin. Hence, since there are
sets of intrinsically synchronizing words associated with each vertex of Gmin and Hmin via the
follower set labels, Ω thus induces a canonical bijection between these sets.

Proof. Let I be a vertex of H′. Considering I as a vertex inside H, we wish to show that it is
labeled with the follower set of an intrinsically synchronizing word. Thus we show H′ ⊆ Hmin,
but since they are of the same size, this suffices.

We can find some word u1 ∈ B(Y) inside H′, if H′ is non-empty (else the result is already
trivial). By Proposition 4.26, we can extend this to u1u2 ∈ B(XH′) such that this word is
synchronizing in H′. By the irreducibility of H′, we can extend this to u1u2u3 ∈ B(XH′) such
that this word terminates at I and remains synchronizing in H′ (by Lemma 4.25).

Since H′ is a minimal right resolving presentation of XH, Lemma 4.33 says that u1u2u3 is
intrinsically synchronizing in XH. Further, he same path labeled u1u2u3 can also be found in H,
we have that I must be labeled with the follower set of u1u2u3.

5 Follower Set Graph Algorithm

5.1 Preliminaries

Here we will present an algorithm for constructing the follower set graph of a shift of finite type,
given a finite set of forbidden words, under certain circumstances. First we will present the
results that allow for us to determine the follower sets of a given shift within a finite number of
steps.

35

Proposition 5.1. Let X be an M-step shift of finite type. Then for every word w ∈ B(X) such
that |w| ≥M , we have that µw ∈ B(X) if and only if µw1 . . . wM ∈ B(X), for every µ ∈ B(X).

Proof. The implication is trivial as µw1 . . . wM is a subword of µw ∈ B(X). The converse is
taken from the fact that if a forbidden word exists in µw, it must be of length less than or equal
to M . We know the forbidden word is not in µw1 . . . wM , hence it must be entirely within the
word w - but this would be a contradiction, since w is an allowed word by assumption.

The above proposition has the immediate implication that F (µ) is entirely determined by
the set we will denote

FM(µ) = {w ∈ Bm(X) : µw ∈ B(X), m ≤M}.

That is, the follower set of µ restricted to words of length M or less. Therefore, calculating
this finite set is sufficient to distinguish between the follower sets of different words. However,
we still have the problem that there are potentially an infinite number of words for which we
must calculate this finite set. A similar argument will solve this problem too. Note that in the
following proposition, we index letters of µ in reverse order for clarity.

Proposition 5.2. Let X be an M-step shift of finite type. Then for every word µ ∈ B(X) of
length N such that N ≥M , we have that F (µ) = F (µM . . . µ1).

Proof. A word w is in F (µ) exactly when µw ∈ B(X). By an argument symmetric to that
of the previous proposition, this occurs if and only if µM . . . µ1w ∈ B(X). Again, this occurs
exactly when w ∈ F (µM . . . µ1).

Hence to determine all distinct follower sets of an M -step shift X, we need only find the
follower sets of the words in B(X) of length M or less.

5.2 Algorithm

Fix an M -step shift of finite type X, generated by a finite set of forbidden words F over the
alphabet A. Further, fix µ = {µ1, . . . , µn} to be the set of words length at most M that do
not contain a forbidden word (including the empty word). Let X∗ be the set of all words not
containing a forbidden word. Note that this may not necessarily be the language of X. The
follower set graph of X∗ is defined in the same way as the follower set graph of X, although the
follower sets are defined over words that do not contain a forbidden word, as opposed to words
in the language of X. The algorithm given below constructs the follower set graph of X∗, which
is a presentation of X. The resulting graph coincides with the follower set graph of X when it
is essential. This is because in this case we achieve µ ∈ B(X) if and only if µ does not contain
a forbidden word. The forward implication is trivial, and the reverse implication comes from
the fact that we can find a path labeled µ terminating at the vertex labeled F (µ), and since the
graph is essential, we can extend this to be part of a bi-infinite walk - hence µ is indeed in the
language of X.

1. Form a table, indexing both rows and columns by elements of µ. For the (µi, µj)-th
entry of the table, if µiµj: does not contain a forbidden word, we enter the boolean value
‘True’ into the table. If it does, we enter ‘False’. The i-th row of this table constitutes
a representations of FM(µi) which is enough to determine the entire follower set of µi.
Further, by Proposition 5.2, there are enough rows to determine all distinct follower sets
of X.

36

2. From this table, we determine the vertices of the graph. Where two rows are equal, the two
words indexing them share a follower set. Each distinct row of the table thus represents a
distinct follower set - but each may have multiple indexing words. For each follower set,
find the set of all indexing words and create a vertex multi-labeled with this set.

3. Although it suffices to compute F (µ) for |µ| ≤M , we will also compute F (µ) for |µ| = M+1
as these will become useful when drawing the edges of the graph. For each such µ, if it is
forbidden do nothing. Else find the vertex with µM . . . µ1 among its labels, and add µ to
the set.

4. Finally, we draw the edges. Repeat the following procedure for each vertex I and each
letter a ∈ A. Take any word labeling the vertex with length less than or equal to M . Call
it w. For each vertex J now check to see if it is labeled with wa. If it is, draw an edge
from I to J labeled a and terminate the search through the remaining vertices. If no such
vertex exists, then do nothing.

Example 5.3. We now illustrate how a follower set graph is constructed using the above algo-
rithm. Let A = {0, 1} and F = {100} define a shift space X. First we form the follower table
indexed by all words of length at most two.

∅ 0 1 00 01 10 11

∅ ∅ 0 1 00 01 10 11
0 0 00 01 000 001 010 011
1 1 10 11 100 101 110 111
00 00 000 001 0000 0001 0010 0011
10 10 100 101 1000 1001 1010 1011
01 01 010 011 0100 0101 0110 0111
11 11 110 111 1100 1101 1110 1111

Next, we determine which of these words are forbidden, and indicate them with a black square.

∅ 0 1 00 01 10 11

∅
0
1
00
10
01
11

This gives the following vertices:

F (∅) = F (0) = F (00) = F (000),

F (1) = F (01) = F (11) = F (001) = F (011) = F (101) = F (111),

F (10) = F (010) = F (110).

Note that F (100) is meaningless here as the word 100 is forbidden. Knowledge of these sets
allows us to construct the follower set graph, displayed in Figure 7. We can see that the graph
is essential and hence is indeed the follower set graph of X.

37

F (∅) F (1)

F (10)

0 1
1

0

1

Figure 7: The constructed follower set graph for X.

Remark 5.4. In fact, this graph provides an original counterexample. Compare it to the
follower set graph of the even shift, given in Example 4.11. We can see that the two graphs
share an unlabeled isomorphism, but the two shifts they represent are not conjugate. In fact,
from Example 3.3, we see that the even shift is not even a shift of finite type (although it is sofic)
whereas our shift space X is of finite type. In fact, we also see that unlabeled isomorphism of
follower set graphs does not preserve the property of being a shift of finite type. This counter-
example was obtained from the implementation of the follower set graph algorithm.

Remark 5.5. We can extend this algorithm to find the minimal right resolving presentation
if given an irreducible shift of finite type. The idea is as follows: take the follower set graph
output by the previous algorithm. Each vertex is multi-labeled with words of length less than
or equal to M whose follower sets coincide. By Proposition 5.2, words of length greater than M
will only be associated with a vertex if the final M letters are also associated - hence, failure to
find associated M -length words implies there are no words of length greater than M associated
either.

We inspect each vertex in turn to determine if it is to be kept in the subgraph H described
in Theorem 4.34. First, check if there exist any M -length words associated with the vertex.
If there are, then they are intrinsically synchronizing by Theorem 3.4, and so must be kept in
H. Otherwise, no words of length M or greater are associated with this vertex. Next, take
each remaining word v of length less than M that the vertex is labeled with. By Proposition
5.1, uv, vw ∈ B(X) implies uvw ∈ B(X) exactly when u1 . . . uMv, vw1 . . . wM ∈ B(X) implies
u1 . . . uMvw1 . . . wM ∈ B(X) for |u|, |w| ≥ M , with each statement being equivalent to v being
intrinsically synchronizing. Hence, allow u and w to be every allowable word of length less than
or equal to M in turn. Check whether the condition uv, vw ∈ B(X) holds, and if so we check
whether uvw ∈ B(X). If this latter condition holds for every pair u and w for which the former
condition holds, we have that v is intrinsically synchronizing and that the vertex should be
included in H. Else v is not intrinsically synchronizing. If we find every associated word v is
not intrinsically synchronizing, then the vertex can be discarded.

38

6 Discussion

We began by introducing our primary objects of study, shift spaces - sets of bi-infinite sequences
generated by a set of forbidden words. The appropriate morphisms between such objects turn
out to be sliding block codes, induced from a fixed block map. Under our chosen metric, it turns
out that shift spaces are exactly the compact and shift invariant sets of sequences, and sliding
block codes are exactly the continuous and shift commuting maps. Thus bijective sliding block
codes are considered the appropriate notion of equivalence, here termed conjugacy. The author
believes that the topological point of view leads to clearer proofs and understanding than the
initial combinatorial nature of the definitions would lead to if used directly.

Shifts of finite type are the first specific subset of shift spaces we studied - spaces generated by
a finite set of forbidden words. We went on to describe graphical representations of shift spaces,
where sequences are considered as bi-infinite walks on a graph. Any given graph represents some
edge shift. We achieve the result that shifts of finite type are exactly the shift spaces conjugate
to those that can be represented like this on an unlabeled graph.

The natural question to ask then, is what types of shift spaces can be represented by labeled
graphs - where sequences are given by the labeled bi-infinite walks? There is an obvious relation
here. The labeling function on the graph in fact induces a simple sliding block code from an edge
shift (a shift of finite type) to this new class of shift spaces. This map is surjective by definition
as every labeling of a bi-infinite walk on a graph is mapped to by the labeling function from the
underlying walk. Hence we show that this class of shift spaces can be written as factor maps of
shifts of finite type. We call such shifts spaces sofic shifts. In fact, we also achieve the converse
- given a shift of finite type and a factor map, we can find a labeled graph presenting the image.
This graph presents the factor of the shifts of finite type, hence showing that the factor is sofic.
Immediately from this, we can see that the class of sofic shifts is actually the closure of the class
of shifts of finite type under factor maps.

Next we explore different graphical representations of sofic shifts. One particularly interesting
construction is that of the follower set graph, which can be constructed when a shift space has
a finite number of distinct follower sets. It is a labeled, right resolving and “follower separated”
presentation of the given shift space, constructed so that each vertex corresponds to a distinct
follower set. It turns out that the shift spaces with finite follower number of distinct follower
sets are exactly the sofic shifts, and thus we can find their presentation as a follower set graph.

In fact, for the subset of shifts of finite type, we give a specific algorithm for constructing such
graphs and a concrete (in the programming language Haskell) implementation of the algorithm.
Using this, we undertake original investigations into what properties the unlabeled ambient graph
of the follower set presentation may preserve. Using the code found in the appendix, we discover
that non-conjugate shifts may have follower set graphs which share unlabeled isomorphism.

Another main result of this report is that sofic shifts that can be represented on an irreducible
graph have a unique (up to labeled isomorphism) minimal presentation among all right resolving
presentations. In fact this is exactly the same presentation as any that is both irreducible and
follower separated. We go on to detail the theory for finding this minimal presentation when
given a follower set graph. Next, we introduce a measure of entropy in order to prove our final
result: for irreducible sofic shifts, unlabeled isomorphism of follower set graphs implies unlabeled
isomorphism of minimal representations.

While the statement of these two theorems is in many ways the culmination of this report,
it should be noted that this is just an introduction to the exciting topic of Symbolic Dynamics.

39

Appendix A Pseudocode

Algorithm 1: Generate FollowerSetGraph(F, symbolSet)

Input : F = the list of forbidden words generating the language.
symbolSet = {1, . . . , d}.

Output: Graph = (Nodes,Edges) where:
– each node in Nodes is the set of words of length less than or equal to k + 1 which
have the same follower set; and
– each edge in Edges is of the form (source, destination, label).

// Deal with the case that F is the empty set.

1 if F is empty then
2 initialize node as a list containing symbolSet and the empty word
3 initialize nodes as a list containing only node
4 initialize edges as empty list
5 foreach letter ∈ symbolSet do
6 insert (node, node, letter) into edges
7 end
8 return(nodes, edges)

9 end
// If F is non-empty find value of k from F.

10 initialize maxLength as 1
11 foreach word ∈ F do
12 if length of word > maxLength then
13 maxLength←− length of word
14 end

15 end
16 initialize k as maxLength− 1

// Generate mu, the set of allowed words of length at most k.
17 initialize mu as a list containing only the empty word
18 foreach n ∈ {1, 2, . . . , k} do
19 foreach word ∈ set of all possible words over symbolSet of length n do
20 if word contains no element of F as a subword then
21 insert word into mu
22 end

23 end

24 end
// Form tables. Indexed by base word and concatenated word.

25 foreach word a ∈ mu do
26 foreach word b ∈ mu do
27 followerTable[a][b] ←− concatenate b with a
28 if followerTable[a][b] contains no element of F as a subword then
29 truthTable[a][b]←− True
30 else
31 truthTable[a][b]←− False
32 end

33 end

34 end

40

Algorithm 2: Generate FollowerSetGraph(F, symbolSet), continued

// Each node of the graph is a set of words sharing the same follower set.

35 initialize Nodes as empty list;
36 foreach row ∈ unique rows of truthTable do
37 initialize node as an empty list;
38 foreach word a ∈ mu do
39 if truthTable[a] = row then
40 insert a into node;
41 end

42 end
43 insert node into Nodes;

44 end

// Add words of length k + 1 to the appropriate node.

45 foreach node ∈ Nodes do
46 foreach word ∈ node do
47 if length of word = k then
48 foreach letter ∈ symbolSet do
49 newWord←− concatenate word with letter;
50 if newWord contains no element of F as a subword then
51 insert newWord into node;
52 end

53 end

54 end

55 end

56 end

// Create edges.

57 initialize Edges as empty list;
58 foreach node ∈ Nodes do
59 foreach letter ∈ symbolSet do
60 newWord←− concatenate letter with any word in node of length less than k + 1;

// Find which node newWord belongs to, if any

61 foreach node′ ∈ Nodes do
62 if newWord ∈ node′ then
63 edge←− (node, node′, letter);
64 insert edge into Edges;
65 break;

66 end

67 end

68 end

69 end

70 return(Nodes, Edges);

41

Appendix B Code

The following code is an implementation of the follower set graph algorithm described in section
5.2 for X∗. As noted above, if the graph is essential then it coincides with the follower set graph
of X. It is written in the language Haskell. A link to the working program can be found in the
references section. There are also included some extra functions which can be used to search for
shifts of finite type whose follower set graphs are isomorphic when considered without labels.
These makes use of the Graph Automorphism [3] library to quickly determine if two graphs are
isomorphic. These functions were used in the associated paper [2].

1 −− FILE : Main . hs
2 import FollowerSetGraph
3

4 va l id Input : : S t r ing −> Bool
5 va l id Input l e t t e r s = a l l (\ l −> l == ’ 0 ’ | | l == ’1 ’) l e t t e r s
6

7 pre t tyPr in t : : ([[S t r ing]] , [(Int , Int , S t r ing)]) −> IO ()
8 pre t tyPr in t (v e r t i c e s , edges) = do
9 putStrLn ” V e r t i c e s (index , words) : ”

10 p r i n t V e r t i c e s v e r t i c e s 1
11 putStrLn ”Edges (from , to , l a b e l) : ”
12 pr intEdges edges
13 putStr ”\n”
14

15 p r i n t V e r t i c e s : : [[S t r ing]] −> Int −> IO ()
16 p r i n t V e r t i c e s [] i t e r = return ()
17 p r i n t V e r t i c e s (ver tex : vs) i t e r = do
18 putStrLn $ (show i t e r) ++ ” ” ++ (show vertex)
19 p r i n t V e r t i c e s vs (i t e r +1)
20

21 pr intEdges : : [(Int , Int , S t r ing)] −> IO ()
22 pr intEdges [] = return ()
23 pr intEdges ((i , j , char) : e s) = do
24 putStrLn $ show (i +1, j +1, char)
25 pr intEdges es
26

27 main = do
28 putStrLn ” Enter fo rb idden words in sequence , or a blank l i n e to generate the

f o l l o w e r s e t graph : ”
29 loop []
30

31 loop : : [S t r ing] −> IO ()
32 loop forbiddenWords = do
33 word <− getLine
34 i f not . va l id Input $ word then do
35 putStrLn ” I n v a l i d input . S ta r t over ”
36 loop []
37 e l s e i f n u l l word then do
38 putStrLn ”The graph generated i s : ”
39 pre t tyPr in t $ constructGraph $ forbiddenWords
40 main
41 e l s e loop (word : forbiddenWords)

42

1 −− FILE : FollowerSetGraph . hs
2 module FollowerSetGraph (
3 constructGraph ,
4 testGraphs
5) where
6

7 import Control . Monad
8 import Data . L i s t
9 import Data . Function (on)

10 import Data . Ord (comparing)
11 import Data . Tuple
12 import q u a l i f i e d Data . Graph as G1 (buildG)
13 import q u a l i f i e d Data . Graph . Automorphism as G2 (i s I somorph i c)
14

15 −− Returns a l l p o s s i b l e words up to l ength n
16 getWords : : Int −> [S t r ing]
17 getWords n = concat $ map (f l i p rep l i cateM ”01”) [0 . . n]
18

19 −− r e tu rn s only words o f l ength N
20 getWordsN : : Int −> [S t r ing]
21 getWordsN n = rep l i cateM n ”01”
22

23 −− Needed because [a , b , c] /= [b , c , a]
24 l i s t s S a m e E l t s : : Eq a => [a] −> [a] −> Bool
25 l i s t s S a m e E l t s xs ys = n u l l (xs \\ ys) && n u l l (ys \\ xs)
26

27 permuteZeroesAndOnes ’ : : S t r ing −> St r ing
28 permuteZeroesAndOnes ’ [] = []
29 permuteZeroesAndOnes ’ (x : xs) =
30 i f x == ’0 ’
31 then ’1 ’ : permuteZeroesAndOnes ’ xs
32 e l s e ’0 ’ : permuteZeroesAndOnes ’ xs
33

34 permuteZeroesAndOnes : : [S t r ing] −> [S t r ing]
35 permuteZeroesAndOnes words = map permuteZeroesAndOnes ’ words
36

37 removePermutations : : [[S t r ing]] −> [[S t r ing]]
38 removePermutations [] = []
39 removePermutations (f s : fWords) =
40 f s : removePermutations (f i l t e r
41 (not . l i s t s S a m e E l t s (permuteZeroesAndOnes f s)) fWords)
42

43 −− Using ” t a i l ” because we dont want the empty word inc luded . Returns only words
o f l ength n

44 getSetsOfForbiddenWords n =
45 removePermutations . t a i l . subsequences $ getWordsN n
46

47 i sAl lowed : : [S t r ing] −> St r ing −> Bool
48 i sAl lowed forbiddenWords word = not $ any (f l i p i s I n f i x O f word) forbiddenWords
49

50 getAllowableWords : : [S t r ing] −> Int −> [S t r ing]
51 getAllowableWords forbiddenWords n =
52 f i l t e r (i sAl lowed forbiddenWords) $ getWords n
53

54 f o l l owe rVec to r : : [S t r ing] −> St r ing −> [S t r ing]

43

55 f o l l owe rVec to r words word = map (word ++) words
56

57 type Fol lowerTable = [(Str ing , [S t r ing])]
58 type TruthTable = [(Str ing , [Bool])]
59

60 f o l l owerTab l e : : [S t r ing] −> Fol lowerTable
61 f o l l owerTab l e words = map (\x −> (x , f o l l owe rVec to r words x)) words
62

63 −− Takes (key , va lue) p a i r s and re tu rn s s e t s o f keys which shared the same value
64 groupSets : : (Ord b) => [(a , b)] −> [[a]]
65 groupSets p a i r s =
66 map (map f s t) $ groupBy ((==) ‘ on ‘ snd) . sortBy (comparing snd) $ p a i r s
67

68 tes tForb idden : : [S t r ing] −> Fol lowerTable −> TruthTable
69 tes tForb idden forbiddenWords t a b l e =
70 map (\ (a , b) −> (a , map (i sAl lowed forbiddenWords) $ b)) t a b l e
71

72 addExtraLetterToFol lowerSet : : Int −> [S t r ing] −> [S t r ing] −> Char −> [S t r ing]
73 addExtraLetterToFol lowerSet k forbiddenWords mus l e t t e r =
74 (f i l t e r (i sAl lowed forbiddenWords) longerMus)
75 where longerMus =
76 map ([l e t t e r] ++) . f i l t e r (\mu −> l ength mu == k) $ mus
77

78 addExtraLettersToFol lowerSets : : Int −> [S t r ing] −> [[S t r ing]] −> [[S t r ing]]
79 addExtraLettersToFol lowerSets k fWords nodes =
80 map (\ node −>
81 node ++ (addExtraLetterToFol lowerSet k fWords node ’ 0 ’) ++
82 (addExtraLetterToFol lowerSet k fWords node ’ 1 ’)) nodes
83

84 −− Node i s a l i s t o f words which are to be ’ fo l lowed ’ . I e the nodes on the graph
85 getNodes : : Int −> [S t r ing] −> [[S t r ing]]
86 getNodes k forbiddenWords =
87 addExtraLettersToFol lowerSets k forbiddenWords . groupSets . te s tForb idden

forbiddenWords . f o l l owerTab l e . getAllowableWords forbiddenWords $ k
88

89 −− Index o f node source , index o f node dest , l a b e l (0 or 1)
90 type MaybeEdge = (Maybe Int , Maybe Int , S t r ing)
91 type Edge = (Int , Int , S t r ing)
92

93 createEdge : : S t r ing −> [S t r ing] −> [[S t r ing]] −> MaybeEdge
94 createEdge add node nodes = (elemIndex node nodes , f indIndex (elem addedLetter)

nodes , add)
95 where addedLetter = (head node) ++ add
96

97 e l i m i n a t e : : [MaybeEdge] −> [Edge]
98 e l i m i n a t e ((Just x , Just y , z) : l i s t) = (x , y , z) : e l i m i n a t e l i s t
99 e l i m i n a t e ((Just x , Nothing , z) : l i s t) = e l i m i n a t e l i s t

100 e l i m i n a t e [] = []
101

102 getEdges : : [[S t r ing]] −> [Edge]
103 getEdges nodes =
104 e l i m i n a t e $ f o l d r
105 (\ node acc −> createEdge ”0” node nodes : createEdge ”1” node nodes : acc) []

nodes
106

44

107 −− Pai r s o f (node , edge) where node i s a l i s t o f f o l l o w e r s e t s a s s o c i a t e d with
that node

108 type Graph = ([[S t r ing]] , [Edge])
109

110 constructGraph : : [S t r ing] −> Graph
111 constructGraph forbiddenWords =
112 (nodes , edges)
113 where
114 k = (maximum $ map length forbiddenWords) − 1
115 nodes = getNodes k forbiddenWords
116 edges = getEdges nodes
117

118 −− Returns l i s t o f l a b e l s coming from each node . Nodes come in a l r eady so r t ed by
f i r s t element

119 getLabe l l edEdgeSetSrc : : Graph −> [S t r ing]
120 getLabe l l edEdgeSetSrc g =
121 s o r t . map
122 (\ edges −> concatMap t r i p l e T r d edges) . groupBy ((==) ‘ on ‘ t r i p l e F s t) $
123 (snd g)
124

125 checkLabe l l edEdgeSetsSrc : : Graph −> Graph −> Bool
126 checkLabe l l edEdgeSetsSrc g1 g2 =
127 getLabe l l edEdgeSetSrc g1 == getLabe l l edEdgeSetSrc g2
128

129 −− Returns l i s t o f l a b e l s going to each node
130 getLabel ledEdgeSetDest : : Graph −> [S t r ing]
131 getLabel ledEdgeSetDest g =
132 s o r t . map
133 (\ edges −> concatMap t r i p l e T r d edges) . groupBy ((==) ‘ on ‘ t r i p l e S n d) .
134 sortBy (comparing t r i p l e S n d) $ (snd g)
135

136 checkLabel ledEdgeSetsDest : : Graph −> Graph −> Bool
137 checkLabel ledEdgeSetsDest g1 g2 =
138 getLabel ledEdgeSetDest g1 == getLabel ledEdgeSetDest g2
139

140 −− r e tu rn s (index , #emmitting)
141 getVertexSrc : : Graph −> [(Int , Int)]
142 getVertexSrc g =
143 map (\ edges −> (t r i p l e F s t . head $ edges , l ength edges)) .
144 groupBy ((==) ‘ on ‘ t r i p l e F s t) . snd $ g
145

146 −− r e tu rn s (index , #edges going to index)
147 getVertexDest : : Graph −> [(Int , Int)]
148 getVertexDest g =
149 sortBy (comparing f s t) .
150 map (\ edges −> (t r i p l e S n d . head $ edges , l ength edges)) .
151 groupBy ((==) ‘ on ‘ t r i p l e S n d) .
152 sortBy (comparing t r i p l e S n d) . snd $ g
153

154 −− Takes (index , #emit t ing) and (index , #edges going to index) and re tu rn s the
so r t ed l i s t o f number o f edges at each node (i gno r i ng d i r e c t i o n)

155 sumEdges : : [(Int , Int)] −> [(Int , Int)] −> [(Int , Int)]
156 sumEdges [] ys = ys
157 sumEdges xs [] = xs
158 sumEdges (x : xs) (y : ys) =

45

159 i f f s t x == f s t y
160 then (f s t x , snd x + snd y) : sumEdges xs ys
161 e l s e (i f f s t x > f s t y
162 then y : sumEdges (x : xs) ys
163 e l s e x : sumEdges xs (y : ys))
164

165 −− Returns so r t ed number o f edges attached to each ver tex
166 getUnlabe l l edEdgeSet : : Graph −> [In t]
167 getUnlabe l l edEdgeSet g =
168 s o r t . map snd $ sumEdges (getVertexSrc g) (getVertexDest g)
169

170 checkUnlabel ledEdgeSet g1 g2 = getUnlabe l l edEdgeSet g1 == getUnlabe l l edEdgeSet g2
171

172 getNumberCycles : : Graph −> Int
173 getNumberCycles g = length . f i l t e r (\ (src , dest , lab) −> s r c == dest) $ snd g
174

175 checkCycles : : Graph −> Graph −> Bool
176 checkCycles g1 g2 = getNumberCycles g1 == getNumberCycles g2
177

178 checkNumberVertices g1 g2 = length (f s t g1) == length (f s t g2)
179

180 graphsCouldBeTheSame : : Graph −> Graph −> Bool
181 graphsCouldBeTheSame g1 g2 =
182 (checkNumberVertices g1 g2) && (checkCycles g1 g2) &&
183 (checkUnlabel ledEdgeSet g1 g2) && (checkLabe l l edEdgeSetsSrc g1 g2) &&
184 (checkLabel ledEdgeSetsDest g1 g2)
185

186 −− Returns (fWords , graph) p a i r s
187 createGraphsOfKValue : : Int −> [([S t r ing] , Graph)]
188 createGraphsOfKValue k =
189 map (\ s e t −> (set , constructGraph s e t)) $ getSetsOfForbiddenWords (k+1)
190

191 −− Double check t h i s i s f o r d igraphs and not j u s t graphs ?
192 myIsIsomorphic : : Graph −> Graph −> Bool
193 myIsIsomorphic g1 g2 = G2 . i s I somorph i c g1 ’ g2 ’
194 where
195 e1 = map (\ (a , b , c) −> (a , b)) (snd g1)
196 e2 = map (\ (a , b , c) −> (a , b)) (snd g2)
197 bounds1 = (0 , l ength . f s t $ g1)
198 bounds2 = (0 , l ength . f s t $ g2)
199 g1 ’ = G1 . buildG bounds1 e1
200 g2 ’ = G1 . buildG bounds2 e2
201

202 −− takes x = (forb idden word set , graph) pa i r and compares aga in s t another l i s t
o f graphs . Returns the s e t s o f fo rb idden words that g ive i somorphic graphs to
that i n s i d e x − i n c l u d i n g the forb idden words gene ra t ing x i t s e l f

203 testOneGraphAgainst : : ([S t r ing] , Graph) −> [([S t r ing] , Graph)] −> [[S t r ing]]
204 testOneGraphAgainst x [] = [f s t x]
205 testOneGraphAgainst x (y : ys) =
206 i f graphsCouldBeTheSame (snd x) (snd y) && myIsIsomorphic (snd x) (snd y)
207 then (f s t y) : testOneGraphAgainst x ys
208 e l s e testOneGraphAgainst x ys
209

210 −− Takes a l i s t o f (fWords , graph) p a i r s and reu t rn s a l i s t o f s e t s o f fWords
that generate s i m i l a r l ook ing graphs

46

211 t e s t : : [([S t r ing] , Graph)] −> [[[S t r ing]]]
212 t e s t [] = []
213

214 −− Dont t e s t e lements a l r eady noted to generate s i m i l a r graphs to prev ious ones
215 t e s t (x : xs) =
216 s im i l a rForb iddenSe t s :
217 (t e s t $ f i l t e r (\ (f s , g) −> not . f l i p elem s imi l a rForb iddenSe t s $ f s) xs)
218 where s im i l a rForb iddenSe t s = testOneGraphAgainst x xs
219

220 testGraphs k =
221 f i l t e r (\ f s −> l ength f s > 1) . t e s t $ (concatMap createGraphsOfKValue [1 . . k])
222

223 −− Helper f u n c t i o n s
224 t r i p l e F s t : : (a , b , c) −> a
225 t r i p l e F s t (a , b , c) = a
226

227 t r i p l e S n d : : (a , b , c) −> b
228 t r i p l e S n d (a , b , c) = b
229

230 t r i p l e T r d : : (a , b , c) −> c
231 t r i p l e T r d (a , b , c) = c

47

References

[1] C. Barrett, Haskell code and implementation of follower set graph algorithm, http://
www.mas.ncl.ac.uk/∼nek29/papers.html (item 21a).

[2] C. Barrett and E. T. A. Kakariadis, On the quantized dynamics of factorial languages,
preprint (arXiv: 1611.06844).

[3] J. Bernardy, Haskell graph automorphism library, https://hackage.haskell.org/package/
hgal-2.0.0.2/docs/Data-Graph-Automorphism.html (2008).

[4] R. Fischer, Graphs and symbolic dynamics, Colloq. Math. Soc. Janos Bolyai: Topics in
Information Theory (1975).

[5] N. Jonoska, Sofic shifts with synchronizing presentations, Theor. Computer Sci. (1995).

[6] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge
University Press, Cambridge, 1995.

[7] R. Pavlov, Symbolic Dynamics course webpage, http://web.cs.du.edu/∼rpavlov/3705/
math3705.html, University of Denver B.

[8] B. Weiss, Subshifts of finite type and sofic systems, Monatsh. Math. (1973), 462–474.

48

http://www.mas.ncl.ac.uk/~nek29/papers.html
http://www.mas.ncl.ac.uk/~nek29/papers.html
https://hackage.haskell.org/ package/hgal-2.0.0.2/docs/Data-Graph-Automorphism.html
https://hackage.haskell.org/ package/hgal-2.0.0.2/docs/Data-Graph-Automorphism.html
http://web.cs.du.edu/~rpavlov/3705/ math3705.html
http://web.cs.du.edu/~rpavlov/3705/ math3705.html

	Introduction
	Fundamentals of Shift Spaces
	Shift Spaces
	Languages
	Sliding Block Codes
	Shifts as Metric Spaces

	Shifts of Finite Type
	Basic Properties and Characterization
	Graphical Representations

	Sofic Shifts
	Basic Properties and Characterization
	Follower Set Graphs
	Minimal Right Resolving Presentations
	Entropy

	Follower Set Graph Algorithm
	Preliminaries
	Algorithm

	Discussion
	Appendix Pseudocode
	Appendix Code

